SCI一区级 | Matlab实现NGO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测

SCI一区级 | Matlab实现NGO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测

目录

    • SCI一区级 | Matlab实现NGO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现NGO-CNN-LSTM-Mutilhead-Attention北方苍鹰算法优化卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测,要求Matlab2023版以上;

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

5.优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现NGO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测
layers0 = [ ...% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')lstmLayer(25,'Outputmode','last','name','hidden1') selfAttentionLayer(2,2)          %创建2个头,2个键和查询通道的自注意力层  dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %regressionLayer('Name','output')    ];lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
pNum = round( pop *  P_percent );    % The population size of the producers   b=1;               %  parameters in Eq. (2.5)l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)p = rand();        % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5   if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/871191.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】Exam4

实现线性不可分logistic逻辑回归 我们目前所学的都是线性回归&#xff0c;例如 y w 1 x 1 w 2 x 2 b y w_1x_1w_2x_2b yw1​x1​w2​x2​b 用肉眼来看数据集的话不难发现&#xff0c;线性回归没有用了&#xff0c;那么根据课程所学&#xff0c;我们是不是可以增加 x 3 x…

论文翻译:Large Language Models for Education: A Survey

目录 大型语言模型在教育领域的应用&#xff1a;一项综述摘要1 引言2. 教育中的LLM特征2.1. LLMs的特征2.2 教育的特征2.2.1 教育发展过程 低进入门槛。2.2.2. 对教师的影响2.2.3 教育挑战 2.3 LLMEdu的特征2.3.1 "LLMs 教育"的具体体现2.3.2 "LLMs 教育"…

linux——线程

线程概念 什么是线程&#xff1f; 在一个程序里的一个执行流叫做线程。一切进程至少有一个线程线程在进程内部运行&#xff0c;本质是在进程地址空间内运行在Linux系统中&#xff0c;在CPU眼中&#xff0c;看到的PCB都要比传统的进程更加轻量化 我们都知道在每一个进程都有属…

Ubuntu 22.04.4 LTS (linux) Auditd 安全审计rm命令 记录操作

1 audit增加rm 规则 #sudo vim /etc/audit/rules.d/audit.rules -w /bin/rm -p x -k delfile #重新启动服务 sudo systemctl restart auditd #查看规则 sudo auditctl -l -w /bin/rm -p x -k delfile 2 测试规则 touch test.txt rm test.tx 3 查看日志 sudo ausear…

Apache-Flink未授权访问高危漏洞修复

漏洞等级 高危漏洞!!! 一、漏洞描述 攻击者没有获取到登录权限或未授权的情况下,或者不需要输入密码,即可通过直接输入网站控制台主页面地址,或者不允许查看的链接便可进行访问,同时进行操作。 二、修复建议 根据业务/系统具体情况,结合如下建议做出具体选择: 配…

无人机之遥控器分类篇

一、传统遥控器 传统无人机遥控器一般包括开关键、遥控天线等基础装置。但是会随着无人机具体的应用和功能而开发不同的按键。它的信号稳定性远超对比其他遥控&#xff0c;而且遥控距离也更远&#xff08;一般遥控范围在100米或以上&#xff09;传统遥控器对于初学者来说比较难…

在uniapp中如何使用地图

1&#xff0c;技术选择 最好是使用webview html形式加载&#xff0c;避免打包app时的地图加载问题 2&#xff0c;webview使用 使用webview必须按照官方文档,官网地址&#xff1a;https://uniapp.dcloud.net.cn/component/web-view.html <template><view><!…

KNN分类算法与鸢尾花分类任务

鸢尾花分类任务 1. 鸢尾花分类步骤1.1 分析问题&#xff0c;搞定输入和输出1.2 每个类别各采集50朵花1.3 选择一种算法&#xff0c;完成输入到输出的映射1.4 第四步&#xff1a;部署&#xff0c;集成 2. KNN算法原理2.1 基本概念2.2 核心理念2.3 训练2.4 推理流程 3. 使用 skle…

elasticsearch 查询超10000的解决方案

前言 默认情况下&#xff0c;Elasticsearch集群中每个分片的搜索结果数量限制为10000。这是为了避免潜在的性能问题。 但是我们 在实际工作过程中时常会遇到 需要深度分页&#xff0c;以及查询批量数据更新的情况 问题&#xff1a;当请求form size >10000 时&#xff0c…

【FreeRTOS】IAR的FreeRTOSConfig.h中在添加头文件的问题

1、今天在\FreeRTOSConfig.h中添加个头文件&#xff0c;总是在头文件的函数定义处报错&#xff1a; Error[40]: Bad instruction 2、百度了半天也没有找到问题 3、原来是这个原因&#xff1a; IAR的Freertos中需加上一个portasm.s的驱动文件&#xff0c;而该文件需要调…

印尼Facebook直播网络需要达到什么要求?

在全球化浪潮的推动下&#xff0c;海外直播正受到企业、个人和机构的广泛关注和青睐。无论是用于营销、推广还是互动&#xff0c;海外直播为各种组织提供了更多机会和可能性。本文将探讨在进行印尼Facebook直播前&#xff0c;需要满足哪些网络条件以确保直播的质量和用户体验。…

南通网站制作基本步骤有哪些

南通网站制作是一个非常重要的工作&#xff0c;它可以帮助企业展示产品、服务和品牌形象&#xff0c;吸引更多的客户和创造更多的商机。网站制作的基本步骤包括需求分析、规划设计、页面制作、网站测试和上线等。 首先是需求分析。在南通网站制作的初期阶段&#xff0c;需要和客…

批量提取PDF指定区域内容到 Excel , 根据PDF文件第一行文字来自动重命名v1.3-附思路和代码实现

本次文章更新内容&#xff0c;图片以及扫描的PDF也可以支持批量提取指定区域内容了&#xff0c;主要是通过截图指定区域&#xff0c;然后使用OCR来识别该区域的文字来实现的&#xff0c;所以精度可能会有点不够&#xff0c;但是如果是数字的话&#xff0c;问题不大&#xff1b;…

一周年——相遇知音

——献给ZINCFFO 有梦便追&#xff0c;何惧&#xff1f; “杂乱无章”的代码片在昏暗的灯光下显得让人心生些许倦意。“我为什么天天都要练习呢&#xff1f;”无奈地合上笔记本电脑&#xff0c;当时多么想把电脑䣹&#xff08;fāi&#xff09;在地上&#xff0c;那就仿佛放下…

OpenGL笔记五之VBO与VAO

OpenGL笔记五之VBO与VAO 总结自bilibili赵新政老师的教程 code review! 文章目录 OpenGL笔记五之VBO与VAO1.VBO2.VAO3.VBO与VAO对比 1.VBO 代码 void prepareVBO() {//1 创建一个vbo *******还没有真正分配显存*********GLuint vbo 0;GL_CALL(glGenBuffers(1, &vbo))…

使用uni-app和Golang开发影音类小程序

在数字化时代&#xff0c;影音内容已成为人们日常生活中不可或缺的一部分。个人开发者如何快速构建一个功能丰富、性能优越的影音类小程序&#xff1f;本文将介绍如何使用uni-app前端框架和Golang后端语言来实现这一目标。 项目概述 本项目旨在开发一个个人影音类小程序&#…

微分方程建模

微分方程建模是数学建模的重要方法&#xff0c;因为许多实际问题的数学描述将导致求解微分方程的定解问题。在高教杯数学建模竞赛中每年都会有一道微分方程建模问题&#xff0c;大体上可以按以 下几步&#xff1a; 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数…

云盘挂载 开机自动模拟 cmd- alist server

云盘挂载 开机自动模拟 cmd- alist server 打开Kimi智能助手, 网址:Kimi.ai - 帮你看更大的世界 (moonshot.cn) 问他: 帮我写一个vbs命令:在D:\sky目录下, 然后cmd, 进入命令行后, 输入 alist server 然后回车 这里 这个目录, 换成自己的 alist.exe所在目录 下面是我完善的示…

GitHub连接超时问题 Recv failure: Connection was reset

用手机热点WIF拉取git项目的时候&#xff0c;遇到Recv failure: Connection was reset问题。 解决办法 一、手动开启本地代理 二、在终端&#xff08;cmd&#xff09;输入命令 git config --global http.proxy http://127.0.0.1:7890 git config --global https.proxy https:…