回归损失和分类损失

回归损失和分类损失是机器学习模型训练过程中常用的两类损失函数,分别适用于回归任务和分类任务。

回归损失函数

回归任务的目标是预测一个连续值,因此回归损失函数衡量预测值与真实值之间的差异。常见的回归损失函数有:

  1. 均方误差(Mean Squared Error, MSE)

    • 计算预测值与真实值之间差的平方的平均值。
    • 对于误差较大的样本,MSE 会给予更高的惩罚,因此对异常值较为敏感。
    • 数学表达式:
  2. 均方根误差(Root Mean Squared Error, RMSE)

    • 是均方误差的平方根,具有与预测值和真实值相同的单位。
    • 数学表达式:
  3. 平均绝对误差(Mean Absolute Error, MAE)

    • 计算预测值与真实值之间绝对差的平均值。
    • MAE 对异常值不如 MSE 敏感。
    • 数学表达式:
  4. Huber损失(Huber Loss)

    • 结合了MSE和MAE的优点,对异常值具有一定的鲁棒性。
    • 数学表达式:

分类损失函数

分类任务的目标是预测一个类别标签,因此分类损失函数衡量预测的概率分布与真实标签分布之间的差异。常见的分类损失函数有:

  1. 二元交叉熵(Binary Cross-Entropy, BCE)

    • 适用于二分类问题。
    • 衡量真实标签与预测概率之间的差异。
    • 数学表达式:
  2. 多元交叉熵(Categorical Cross-Entropy, CCE)

    • 适用于多分类问题。
    • 衡量真实标签的一个热编码与预测概率分布之间的差异。
    • 数学表达式:
  3. 稀疏分类交叉熵(Sparse Categorical Cross-Entropy, SCCE)

    • 适用于多分类问题,但真实标签不是一个热编码,而是一个整数索引。
    • 数学表达式与CCE相同,但真实标签是整数索引而不是一个热编码。
  4. Kullback-Leibler散度(Kullback-Leibler Divergence, KL Divergence)

    • 衡量两个概率分布之间的差异。
    • 常用于强化学习和生成模型中。
    • 数学表达式:其中 P是真实分布, Q是预测分布。

选择损失函数的建议

  • 如果你的任务是预测连续值,选择回归损失函数,如 MSE 或 MAE
  • 如果你的任务是分类,选择分类损失函数,如 BCE 或 CCE
  • 具体选择哪种损失函数,还需根据任务的特点和数据的分布来确定。MSE 对异常值敏感,而 MAE 较为鲁棒;交叉熵损失函数适用于概率预测,而 KL 散度则适用于比较概率分布。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/870711.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【UNI-APP】阿里NLS一句话听写typescript模块

阿里提供的demo代码都是javascript,自己捏个轮子。参考着自己写了一个阿里巴巴一句话听写Nls的typescript模块。VUE3的组合式API形式 startClient:开始听写,注意下一步要尽快开启识别和传数据,否则6秒后会关闭 startRecognition…

004-基于Sklearn的机器学习入门:回归分析(下)

本节及后续章节将介绍机器学习中的几种经典回归算法,包括线性回归,多项式回归,以及正则项的岭回归等,所选方法都在Sklearn库中聚类模块有具体实现。本节为下篇,将介绍多项式回归和岭回归等。 目录 2.3 多项式回归 2…

Point Cloud Library (PCL) for Python - pclpy 安装指南 (1)

以下所有的版本号务必按照说明安装。 1.安装 Python 3.6 https://www.python.org/ftp/python/3.6.8/python-3.6.8-amd64.exe #或 百度网盘 2.确认 Python 版本为 3.6.x python #Python 3.6.8 (tags/v3.6.8:3c6b436a57, Dec 24 2018, 00:16:47) [MSC v.1916 64 bit (AMD64)] on…

给后台写了一个优雅的自定义风格的数据日志上报页面

highlight: atelier-cave-dark 查看后台数据日志是非常常见的场景,经常看到后台的小伙伴从服务器日志复制一段json数据字符串,然后找一个JSON工具网页打开,在线JSON格式化校验。有的时候,一些业务需要展示mqtt或者socket的实时信息展示,如果不做任何修改直接展示一串字符…

学习笔记——动态路由——IS-IS中间系统到中间系统(特性之路由撤销)

6、路由撤销 ISIS路由协议的路由信息是封装在LSP报文中的TLV中的,但是它对撤销路由的处理和OSPF的处理方式类似。 在ISIS中撤销一条路由实则是将接口下的ISIS关闭: 撤销内部路由: 在ISIS中路由信息是由IP接口TLV和IP内部可达性TLV共同来描…

合宙 Air780E模块 AT 指令 MQTT连接

固件说明 重启模块 //tx ATRESET//rx ATRESETOK ^boot.romv!\n RDY^MODE: 17,17E_UTRAN ServiceCGEV: ME PDN ACT 1NITZ: 2024/07/10,08:33:440,0查询模块版本信息 //tx ATCGMR//rx ATCGMRCGMR: "AirM2M_780E_V1161_LTE_AT"OK基本流程 4G模块支持MQTT和MQTT SSl协…

顶顶通呼叫中心中间件-私有化asrproxy配置热词模型

顶顶通呼叫中心中间件-私有化asrproxy配置热词模型 1、配置热词文件 将热词存在一个txt文件中,比如:hotword.txttxt文本里面写热词,一个热词一行,用utf8编码把热词文件上传到asrproxy程序目录中,路径:/dd…

读人工智能全传10深度思维

1. 深度思维 1.1. DeepMind 1.1.1. 深度思维 1.1.2. 2014年的员工不足25人 1.1.3. 深度思维公司公开宣称其任务是解决智能问题 1.1.4. 2014年谷歌收购DeepMind,人工智能突然成了新闻热点,以及商业热点 1.1.4.1. 收购报价高达4亿英镑 1.1.4.2. 深度…

头歌资源库(26)方格填数

一、 问题描述 二、算法思想 这是一个排列组合问题。我们可以使用动态规划的思想来求解。 假设dp[i]表示填入前i个位置的数字的方案数。考虑第i个位置,它有9种填法(0~9减去前一个位置上的数字),则有dp[i] 9 * dp[i-1]。由于第…

240711_昇思学习打卡-Day23-LSTM+CRF序列标注(2)

240711_昇思学习打卡-Day23-LSTMCRF序列标注(2) 今天记录LSTMCRF序列标注的第二部分。仅作简单记录 Score计算 首先计算正确标签序列所对应的得分,这里需要注意,除了转移概率矩阵𝐏外,还需要维护两个大小…

html5——CSS基础选择器

目录 标签选择器 类选择器 id选择器 三种选择器优先级 标签指定式选择器 包含选择器 群组选择器 通配符选择器 Emmet语法&#xff08;扩展补充&#xff09; 标签选择器 HTML标签作为标签选择器的名称&#xff1a; <h1>…<h6>、<p>、<img/> 语…

如何做好漏洞扫描工作提高网络安全

在数字化浪潮席卷全球的今天&#xff0c;企业数字化转型已成为提升竞争力、实现可持续发展的关键路径。然而&#xff0c;这一转型过程并非坦途&#xff0c;其中网络安全问题如同暗礁般潜伏&#xff0c;稍有不慎便可能引发数据泄露、服务中断乃至品牌信誉受损等严重后果。因此&a…

edge 学习工具包 math solver

简介 推荐微软推出的学习工具中的两项工具&#xff1a;数学求解器和 pdf 阅读器。 打开 edge 学习工具包的方法 &#xff1a;右上角三点-更多工具-学习工具包。 math solver 除了基础的计算求解外&#xff0c;还用图标展示公式&#xff0c;清晰直观。 地址&#xff1a;求解…

CentOS7使用yum命令报错

目录结构 前言使用yum命令&#xff0c;报错信息问题排查解决方案参考文章 前言 安装CentOS 7 虚拟机&#xff0c;使用yum命令报错&#xff0c;调查整理如下&#xff1a; 使用yum命令&#xff0c;报错信息 [rootlocalhost ~]# sudo yum install net-tools 已加载插件&#xff…

每天五分钟深度学习:向量化技术在神经网络中的应用

本文重点 向量化技术,简而言之,就是利用矩阵运算(而非传统的for循环)来执行大规模的计算任务。这种技术依赖于单指令多数据(SIMD)架构,允许一个指令同时对多个数据元素执行相同的操作。例如,在向量化加法中,不再需要逐个元素进行加法操作,而是可以一次性对整个向量执…

【电子通识】无源元件与有源元件的定义和区别是什么?

当提到构成电路的电子器件时,许多人可能会想到晶体管、电容器、电感器和电阻器等器件。一般情况下,我们使用的电子器件分为两大类,即“有源元件”和“无源元件”。 有源元件是主动影响(如放大、整流、转换等)所供给电能的元件。 无源元件是对所供给的电能执行被动…

流程图编辑框架LogicFlow-vue-ts和js

LogicFlow官网https://site.logic-flow.cn/LogicFlow 是一款流程图编辑框架&#xff0c;提供了一系列流程图交互、编辑所必需的功能和灵活的节点自定义、插件等拓展机制。LogicFlow支持前端研发自定义开发各种逻辑编排场景&#xff0c;如流程图、ER图、BPMN流程等。在工作审批配…

【zabbix7】开启HTTP authentication实现单点登录

开启HTTP authentication实现单点登录 一、新建http验证用户 htpasswd -c /etc/nginx/.htpasswd another_username # 在提示中输入密码二、新建Nginx配置文件 把zabbix.conf拷贝一份&#xff0c;然后修改listen监听的端口。 cp zabbx.conf zabbix_http.conf 每个location中新…

【Dison夏令营 Day 16】如何使用 Python 中的 PyGame 制作俄罗斯方块游戏

俄罗斯方块(Tetris)是一款经典的益智游戏&#xff0c;游戏的目的是将落下的几何图形片&#xff08;称为 “俄罗斯方块”&#xff09;排列起来&#xff0c;填满水平线&#xff0c;不留空隙。当一条线被完全填满时&#xff0c;它就被清除了&#xff0c;玩家就能获得分数。随着四角…

操作系统——内存管理(面试准备)

虚拟内存 单片机没有操作系统&#xff0c;每次写完代码&#xff0c;都需要借助工具把程序烧录进去&#xff0c;这样程序才能跑起来。 另外&#xff0c;单片机的CPU是直接操作内存的物理地址。 在这种情况下&#xff0c;想在内存中同时运行两个程序是不可能的&#xff0c;如果第…