《动手学深度学习 Pytorch版》 7.1 深度卷积神经网络(AlexNet)

7.1.1 学习表征

深度卷积神经网络的突破出现在2012年。突破可归因于以下两个关键因素:

  • 缺少的成分:数据
    数据集紧缺的情况在 2010 年前后兴起的大数据浪潮中得到改善。ImageNet 挑战赛中,ImageNet数据集由斯坦福大学教授李飞飞小组的研究人员开发,利用谷歌图像搜索对分类图片进行预筛选,并利用亚马逊众包标注每张图片的类别。这种数据规模是前所未有的。
  • 缺少的成分:硬件
    2012年,Alex Krizhevsky和Ilya Sutskever使用两个显存为3GB的NVIDIA GTX580 GPU实现了快速卷积运算,推动了深度学习热潮。

7.1.2 AlexNet

2012年横空出世的 AlexNet 首次证明了学习到的特征可以超越手动设计的特征。

AlexNet 和 LeNet 的架构非常相似(此书对模型稍微精简了一下,取出来需要两个小GPU同时运算的设计特点):

全连接层(1000)

↑ \uparrow

全连接层(4096)

↑ \uparrow

全连接层(4096)

↑ \uparrow

3 × 3 3\times3 3×3最大汇聚层,步幅2

↑ \uparrow

3 × 3 3\times3 3×3卷积层(384),填充1

↑ \uparrow

3 × 3 3\times3 3×3卷积层(384),填充1

↑ \uparrow

3 × 3 3\times3 3×3卷积层(384),填充1

↑ \uparrow

3 × 3 3\times3 3×3最大汇聚层,步幅2

↑ \uparrow

5 × 5 5\times5 5×5卷积层(256),填充2

↑ \uparrow

3 × 3 3\times3 3×3最大汇聚层,步幅2

↑ \uparrow

11 × 11 11\times11 11×11卷积层(96),步幅4

↑ \uparrow

输入图像( 3 × 224 × 224 3\times224\times224 3×224×224

AlexNet 和 LeNet 的差异:

- AlexNet 比 LeNet 深的多
- AlexNet 使用 ReLU 而非 sigmoid 作为激活函数

以下为 AlexNet 的细节。

  1. 模型设计

    由于 ImageNet 中的图像大多较大,因此第一层采用了 11 × 11 11\times11 11×11 的超大卷积核。后续再一步一步缩减到 3 × 3 3\times3 3×3。而且 AlexNet 的卷积通道数是 LeNet 的十倍。

    最后两个巨大的全连接层分别各有4096个输出,近 1G 的模型参数。因早期 GPU 显存有限,原始的 AlexNet 采取了双数据流设计。

  2. 激活函数

    ReLU 激活函数是训练模型更加容易。它在正区间的梯度总为1,而 sigmoid 函数可能在正区间内得到几乎为 0 的梯度。

  3. 容量控制和预处理

    AlexNet 通过暂退法控制全连接层的复杂度。此外,为了扩充数据,AlexNet 在训练时增加了大量的图像增强数据(如翻转、裁切和变色),这也使得模型更健壮,并减少了过拟合。

import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(# 这里使用一个11*11的更大窗口来捕捉对象。# 同时,步幅为4,以减少输出的高度和宽度。# 另外,输出通道的数目远大于LeNetnn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 使用三个连续的卷积层和较小的卷积窗口。# 除了最后的卷积层,输出通道的数量进一步增加。# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合nn.Linear(6400, 4096), nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(p=0.5),# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000nn.Linear(4096, 10))
X = torch.randn(1, 1, 224, 224)
for layer in net:X=layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)
Conv2d output shape:	 torch.Size([1, 96, 54, 54])
ReLU output shape:	 torch.Size([1, 96, 54, 54])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Conv2d output shape:	 torch.Size([1, 256, 26, 26])
ReLU output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 256, 12, 12])
ReLU output shape:	 torch.Size([1, 256, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 256, 5, 5])
Flatten output shape:	 torch.Size([1, 6400])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])

7.1.3 读取数据集

如果真用 ImageNet 训练,即使是现在的 GPU 也需要数小时或数天的时间。在此仅作演示,仍使用 Fashion-MNIST 数据集,故在此需要解决图像分辨率的问题。

batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

7.1.4 训练 AlexNet

lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要二十分钟,慎跑
loss 0.330, train acc 0.879, test acc 0.878
592.4 examples/sec on cuda:0

在这里插入图片描述

练习

(1)尝试增加轮数。对比 LeNet 的结果有什么不同?为什么?

lr, num_epochs = 0.01, 15
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要三十分钟,慎跑
loss 0.284, train acc 0.896, test acc 0.887
589.3 examples/sec on cuda:0

在这里插入图片描述

相较于 LeNet 的增加轮次反而导致精度下降,AlexNet 具有更好的抗过拟合能力,增加轮次精度就会上升。


(2) AlexNet 模型对 Fashion-MNIST 可能太复杂了。

a. 尝试简化模型以加快训练速度,同时确保准确性不会显著下降。b. 设计一个更好的模型,可以直接在 $28\times28$ 像素的图像上工作。
net_Better = nn.Sequential(nn.Conv2d(1, 64, kernel_size=5, stride=2, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=1),nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),nn.Linear(64 * 5 * 5, 1024), nn.ReLU(),nn.Dropout(p=0.3), nn.Linear(1024, 512), nn.ReLU(),nn.Dropout(p=0.3),nn.Linear(512, 10)
)X = torch.randn(1, 1, 28, 28)
for layer in net_Better:X=layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)
Conv2d output shape:	 torch.Size([1, 64, 14, 14])
ReLU output shape:	 torch.Size([1, 64, 14, 14])
MaxPool2d output shape:	 torch.Size([1, 64, 12, 12])
Conv2d output shape:	 torch.Size([1, 128, 12, 12])
ReLU output shape:	 torch.Size([1, 128, 12, 12])
Conv2d output shape:	 torch.Size([1, 128, 12, 12])
ReLU output shape:	 torch.Size([1, 128, 12, 12])
Conv2d output shape:	 torch.Size([1, 64, 12, 12])
ReLU output shape:	 torch.Size([1, 64, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 64, 5, 5])
Flatten output shape:	 torch.Size([1, 1600])
Linear output shape:	 torch.Size([1, 1024])
ReLU output shape:	 torch.Size([1, 1024])
Dropout output shape:	 torch.Size([1, 1024])
Linear output shape:	 torch.Size([1, 512])
ReLU output shape:	 torch.Size([1, 512])
Dropout output shape:	 torch.Size([1, 512])
Linear output shape:	 torch.Size([1, 10])
batch_size = 128
train_iter28, test_iter28 = d2l.load_data_fashion_mnist(batch_size=batch_size)
lr, num_epochs = 0.01, 10
d2l.train_ch6(net_Better, train_iter28, test_iter28, num_epochs, lr, d2l.try_gpu())  # 快多了
loss 0.429, train acc 0.841, test acc 0.843
6650.9 examples/sec on cuda:0

在这里插入图片描述


(3)修改批量大小,并观察模型精度和GPU显存变化。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())  # 大约需要二十分钟,慎跑
loss 0.407, train acc 0.850, test acc 0.855
587.8 examples/sec on cuda:0

在这里插入图片描述

4G 显存基本拉满,精度略微下降,过拟合貌似严重了。


(4)分析 AlexNet 的计算性能。

a. 在 AlexNet 中主要是哪一部分占用显存?b. 在AlexNet中主要是哪部分需要更多的计算?c. 计算结果时显存带宽如何?

a. 第一个全连接层占用显存最多

b. 倒数第二个卷积层需要更多的计算


(5)将dropout和ReLU应用于LeNet-5,效果有提升吗?再试试预处理会怎么样?

net_try = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.ReLU(),nn.Dropout(p=0.2), nn.Linear(120, 84), nn.ReLU(),nn.Dropout(p=0.2), nn.Linear(84, 10))lr, num_epochs = 0.6, 10
d2l.train_ch6(net_try, train_iter28, test_iter28, num_epochs, lr, d2l.try_gpu())  # 浅调一下还挺好
loss 0.306, train acc 0.887, test acc 0.883
26121.2 examples/sec on cuda:0

在这里插入图片描述

浅浅调一下,效果挺好,精度有所提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/86859.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js对象属性

在面向对象的语言中有一个标志,那就是都有类,通过类可以创建任意多个相同属性、方法的对象。在js中没有类的存在,所以js中的对象,相对于类语言中对象有所不同。 js中定义对象为:“无序属性的集合,其属性可…

虹科案例 | LIN/CAN总线汽车零部件测试方案

文章来源:虹科汽车电子 点此阅读原文 虹科的LIN/CAN总线汽车零部件测试方案是一款优秀的集成套装,基于Baby-LIN系列产品,帮助客户高效完成在测试、生产阶段车辆零部件质量、功能、控制等方面的检测工作。 1、汽车零部件测试的重要性&#xf…

乐鑫科技全球首批支持蓝牙 Mesh Protocol 1.1 协议

乐鑫科技 (688018.SH) 非常高兴地宣布,其自研的蓝牙 Mesh 协议栈 ESP-BLE-MESH 现已支持最新蓝牙 Mesh Protocol 1.1 协议的全部功能,成为全球首批在蓝牙技术联盟 (Bluetooth SIG) 正式发布该协议之前支持该更新的公司之一。这意味着乐鑫在低功耗蓝牙无线…

【Java 基础篇】Java Stream 流详解

Java Stream(流)是Java 8引入的一个强大的新特性,用于处理集合数据。它提供了一种更简洁、更灵活的方式来操作数据,可以大大提高代码的可读性和可维护性。本文将详细介绍Java Stream流的概念、用法和一些常见操作。 什么是Stream…

API网关是如何提升API接口安全管控能力的

API安全的重要性 近几年,越来越多的企业开始数字化转型之路。数字化转型的核心是将企业的服务、资产和能力打包成服务(服务的形式通常为API,API又称接口,下文中提到的API和接口意思相同),从而让资源之间形…

怎么在OPPO手机桌面上添加文字?便签桌面插件添加教程

很多年轻女性在选择手机时,都比较青睐于设计时尚靓丽、轻薄且续航好、系统流畅、拍照清晰的OPPO手机,并且OPPO为不同的用户提供了高中低不同价格档位的手机型号,能够满足绝大多数女性消费者的使用需求。 不过有不少OPPO手机用户表示&#xf…

关于项目、项目集、项目组合以及运营管理之间的关系

什么是项目? 【项目】这个名词,其实各位一点都不陌生,各位从小到大在各种报章杂志,甚至是每晚的新闻播报里面,每每都会看到或是听到【项目】这个词语,甚至在各位进入大学,或是研究生的阶段里就…

基于人脸5个关键点的人脸对齐(人脸纠正)

摘要:人脸检测模型输出人脸目标框坐标和5个人脸关键点,在进行人脸比对前,需要对检测得到的人脸框进行对齐(纠正),本文将通过5个人脸关键点信息对人脸就行对齐(纠正)。 一、输入图像…

ORB-SLAM2实时稠密地图,解决运行报段错误(核心已转储)运行数据集时出现段错误,出现可视化界面后闪退(添加实时彩色点云地图+保存点云地图)

高翔的稠密建图仓库 1. git clone https://github.com/gaoxiang12/ORBSLAM2_with_pointcloud_map.git 2. 去ORB SLAM2里拷贝Vocabulary到/home/cgm/ORBSLAM2_with_pointcloud_map/ORB_SLAM2_modified文件夹下 3. 删除一些build文件夹 删除ORB_SLAM2_modified/Thirdparty/DB…

哈希 -- 位图、布隆过滤器、海量数据处理

目录 一、位图1.1 经典题目1.2 位图概念1.3 位图的应用1.4 关于位图的三个经典问题 二、布隆过滤器2.1 布隆过滤器的提出2.2 布隆过滤器的概念2.3 布隆过滤器的插入2.4 布隆过滤器的查找2.5 布隆过滤器删除2.6 代码实现2.7 布隆过滤器的优点2.8 布隆过滤器的缺陷2.9 布隆过滤器…

TongWeb8下应用忙碌线程监控

问题 : 在系统运行过程中发现TongWeb进程占用CPU过高,需要分析是应用哪里引起的问题。 分析过程(仅限Linux环境): 1. 通过top命令查看TongWeb的java进程占用的CPU情况。 查看误区:不要以为java进程CPU占到398%就是高&#xff0…

MySQL学习笔记12

MySQL 查询语句: 1、查询五子句:(重点) mysql> select */字段列表 from 数据表名称 where 子句 group by 子句 having 子句 order by 子句 limit 子句; 1)where 子句;条件筛选。 2)group…

golang 通过案列感受下内存分析

package main // 声音文件所在的包,每个go文件必须有归属的包 import ("fmt" )// 引入程序中需要用的包,为了使用包下的函数,比如:Printinfunc exchangeNum(num1 int, num2 int){var t intt num1num1 num2num2 t }…

Elasticsearch:什么是向量和向量存储数据库,我们为什么关心?

Elasticsearch 从 7.3 版本开始支持向量搜索。从 8.0 开始支持带有 HNSW 的 ANN 向量搜索。目前 Elasticsearch 已经是全球下载量最多的向量数据库。它允许使用密集向量和向量比较来搜索文档。 矢量搜索在人工智能和机器学习领域有许多重要的应用。 有效存储和检索向量的数据库…

Cortex-M3/M4之SVC和PendSV异常

一、SVC异常 SVC(系统服务调用,亦简称系统调用)用于产生系统函数的调用请求。例如,操作系统不让用户程序直接访问硬件,而是通过提供一些系统服务函数,用户程序使用 SVC 发出对系统服务函数的呼叫请求,以这种方法调用它…

2023华为杯数学建模D题第三问-碳排放路径优化(能源消费结构调整的多目标优化模型构建详细过程+模型假设(可复制))

1.碳排放约束下(人为干预按时碳达峰与碳中和的基准情景)能源消费结构多目标优化模型构建 1.1基本假设 本文的模型设计主要基于以下几个基本假设: (1)能源消费结构调整的根本驱动要素,是对投资耗费的最小化…

威胁的数量、复杂程度和扩散程度不断上升

Integrity360 宣布了针对所面临的网络安全威胁、数量以及事件响应挑战的独立研究结果。 数据盗窃、网络钓鱼、勒索软件和 APT 是最令人担忧的问题 这项调查于 2023 年 8 月 9 日至 14 日期间对 205 名 IT 安全决策者进行了调查,强调了他们的主要网络安全威胁和担忧…

Java流式编程的使用

流式编程的使用步骤 使用流式编程的步骤就是: 设置数据源, 设置数据处理的方式,设置收集结果的方式。 使用filter方法实现过滤条件 例子为下&#xff08;查询年龄大于18的用户&#xff09;: Testpublic void streamTest1() {List<Student> students Arrays.asList(ne…

《JVM》第二篇 JVM内存模型深度剖析与优化

目录 一. JDK体系结构与跨平台特性介绍二. JVM内存模型深度剖析三. 从Jvisualvm来研究下对象内存流转模型四. GC Root与STW机制五. JVM参数设置通用模型 一. JDK体系结构与跨平台特性介绍 二. JVM内存模型深度剖析 按照线程是否共享来划分 TLAB(Thread Local Allocation Buffe…

改写软件-怎么选择改写软件

什么是改写软件&#xff1f;改写软件是基于自然语言处理技术的工具&#xff0c;它们可以分析一段文字&#xff0c;并将其重新表达&#xff0c;以保持原始意义&#xff0c;但使用不同的词汇和结构。这种技术可用于减少内容的重复&#xff0c;增加多样性&#xff0c;或者简化复杂…