【Linux】:程序地址空间

朋友们、伙计们,我们又见面了,本期来给大家解读一下有关Linux程序地址空间的相关知识点,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成!

C 语 言 专 栏:C语言:从入门到精通

数据结构专栏:数据结构

个  人  主  页 :stackY、

C + + 专 栏   :C++

Linux 专 栏  :Linux

​ 

目录

1. 程序地址空间分布 

2. 基于地址空间,重新理解地址

3. 进程地址空间

3.1 地址空间和区域划分

3.2 为什么要有地址空间? 

4. 基于地址空间进行扩展

4.1 每一个进程都有页表

4.2 缺页中断 

4.3 进程的独立性

5. 写时拷贝


1. 程序地址空间分布 

在C语言阶段就了解过这个图,那么本章来配合代码深入了解一下:

#include <stdio.h>
#include <stdlib.h>int un_gval;
int init_gval = 100;int main(int argc, char *argv[], char *env[])
{printf("code addr: %p\n", main);                     // 代码区const char *str = "HelloLinux!";printf("read only char addr: %p\n", str);            // 字符常量区printf("init global value addr: %p\n", &init_gval);  // 已初始化全局数据区printf("uninit global value addr: %p\n", &un_gval);  // 未初始化全局数据区char* heap = (char*)malloc(100);printf("heap addr: %p\n", heap);                     // 堆区printf("stack addr: %p\n", &str);                    // 栈区int i = 0;for(i = 0; argv[i]; i++){printf("argv[%d]: %p\n",i, argv[i]);             // 命令行参数}for(i = 0; env[i]; i++){printf("env[%d]: %p\n",i, env[i]);               // 环境变量}return 0;
}

​ 使用代码将对应区域的地址打印出来可以发现于图片完全一致。

① 在程序地址空间中的堆区是向上增长的,栈区是向下增长的,通常也叫做堆栈相对而生。

② 我们定义的任何类型(栈区中)都是整体向下开辟,使用时局部向上使用。

③ 在栈中定义的int类型变量是4个字节,我们要访问时,需要通过它的起始地址再配合它的类型大小进行访问,变量类型大小就相当于起始地址的偏移量,访问的形式就是起始地址 + 偏移量。

④ static修饰局部变量本质上就是将局部变量的地址放到了全局区(全局变量)。

2. 基于地址空间,重新理解地址

在之前的进程创建与进程fork本质章节中遗留了一个问题:如何理解同一个变量会有两个不同的指?

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>int g_val = 100;int main()
{pid_t id = fork();if(id == 0){//childint cnt = 5;while(1){printf("child, Pid: %d, Ppid: %d, g_val: %d, &g_val=%p\n", getpid(), getppid(), g_val, &g_val);sleep(1);if(cnt == 0){g_val=200;printf("child change g_val: 100->200\n");}cnt--;}}else{//fatherwhile(1){printf("father, Pid: %d, Ppid: %d, g_val: %d, &g_val=%p\n", getpid(), getppid(), g_val, &g_val);sleep(1);}}return 0;
}

可以看到具有相同的地址同一个变量居然会有两个值,那么这也就证明了我们C/C++中观察到的地址并不是物理地址,我们平时用到的地址都是虚拟地址/线性地址

3. 进程地址空间

前面提到的虚拟地址也叫做进程的地址空间,它属于进程PCB中的一个字段,每一个进程在运行之后,都会有一个进程地址空间。

现在就来一步一步解释为什么同一个地址的变量会有两种值:

① 我们定义的全局变量g_val在已初始化全局数据区,里面保存的是该变量的起始地址,进程地址空间不存储数据,它是虚拟地址,那么就要有需要有真正存储数据的地址--物理地址

② 数据存储在物理地址中,需要通过一种类似于hash的映射关系由虚拟到物理的转化,这种方式在这里叫做--页表,通过页表可以完成由虚拟地址映射到物理地址。

③ 父进程创建子进程的时候需要以自己的PCB为模版来构建子进程的PCB,所以父进程中的全局变量g_val的虚拟地址在子进程的进程地址空间中也会有,同样的,子进程的页表也需要按照父进程为模版构建,所以虚拟到物理的转化关系也有了。

④ 此时,子进程的虚拟地址到物理地址的转化之后也指向了同一块物理地址,当检测到子进程要修改这个变量时,OS会先以写时拷贝的方式在物理地址中重新找一块空间,拷贝原来的数据到新的空间,并将子进程页表中的映射关系随之改变,然后就可以随意的修改变量。

⑤ 当子进程修改完变量的值之后,我们再查看时就会发现同一个地址(虚拟地址)的变量会有两个值。

3.1 地址空间和区域划分

先来了解一下空间的概念(以32位机器为例),在之前C语言的指针阶段就提到,计算机只认识二进制,那么二进制的0或1表示的就是有无的意思,那么在计算机里面的0或1表示的就是是否有电频,32位机器中存在会有32根地址总线,每一根地址线表示的情况都会两种,所以32根地址线一共会有2^32种情况,我们访问数据是以byte为单位,所以它的总大小换算一下就是2^32byte = 4GB大小的空间。 

地址空间 

假设一个OS的内存一共有4GB的空间大小,在我们运行程序的时候,OS会管理许多的进程,那么进程被调度是需要内存空间的,所以呢,OS就会虚拟的给每一个进程分配OS仅有的4GB的内存空间,那么在OS管理下的所有的进程都会认为自己将来会有4GB的内存空间,简单的说就是OS给每一个进程画了一张饼,那么这张饼就叫做虚拟地址空间(地址空间)

区域划分

通过一个小故事来理解区域划分:

在某小学,小胖和小花是同桌,共同使用一个长度位100cm的桌子,由于小胖的不注意卫生,遭到了小花的嫌弃,所以呢,小花就提出不再共同使用这张桌子,而是在桌子的中间画一条线,他两每一个用一半,这条线也被我们亲切的称为38线,所以画38线的本质就是对空间进行区域划分

区域调整

还是小胖和小花的这个例子,再画完38线之后呢,小胖和小花愉快的度过了一段时间,但是还是因为小胖的不自觉,经常把自己的垃圾放在小花的那一块,这就让小花很不能忍受,再加上小花实力在小胖之上,所以直接将小胖的区域再次压缩,从之前的五五分直接变成了四六分,对小胖的区域压缩的行为就叫做区域调整。

代码简述

对小胖和小花的这个行为使用计算机语言简单的描述就是:

地址空间也要被管理! 

在OS中会有许多的进程,每一个进程都有对应的地址空间,在系统中,一定要对地址空间做管理,防止地址空间的混淆。根据管理的本质:先描述,再组织。

在Linux中,这个进程/虚拟地址空间的东西叫做:struct mm_struct:

它是进程PCB中的一个字段,在PCB中是通过struct mm_struct *mm指向的一个结构化字段。

得出的结论:地址空间最终是一个内核的数据结构对象!就是一个内核结构体,所以我们看到的地址叫做虚拟地址。

3.2 为什么要有地址空间? 

1. 地址空间固定的存储结构,可以让进程以统一的视角看待内存,所以任意一个进程,可以通过地址空间 + 页表将乱序的内存数据变成有序并分门别类的规划好。

在我们的计算机中存在许多的程序,那么当程序要运行就要被加载到内存中,OS就要在内存中给进程分配空间,此时的进程的代码和数据会在内存中杂乱的分布,没有顺序,这使得PCB在寻找自己的代码和数据时非常麻烦,地址空间恰好解决了这一点。

2. 地址空间配合页表可以很好的进行进程访问的内存安全检查。  

在页表中还存在一个字段,它表示的是访问权限的字段,有的是只读,有的是只写,有的是读写,就比如常量字符串只允许读,不允许修改。地址空间就起到了一个控制检查的作用。

3. 将进程管理和内存管理解耦 

由PCB到虚拟地址的提取以及保存的这一过程是属于进程管理的,从内存到物理地址的提取与保存这一过程是属于内存管理的,两者互不影响! 

4. 基于地址空间进行扩展

4.1 每一个进程都有页表

在CPU内部有一个寄存器叫做:CR3寄存器,它主要是保存当前进程的页表地址。

在之前的进程切换章节我们了解到,进程要被CPU调度,进程在CPU内运行形成的临时数据叫做进程的硬件上下文,那么页表由虚拟到物理的转化也是属于数据,那么CP3寄存器的数据也叫做该进程的硬件上下文,当进程切换的时候,会将进程的硬件上下文数据从寄存器剥离下来,保存在自己的PCB中,那么每一个进程都要这么做,所以每一个进程都有自己独立的页表。

4.2 缺页中断 

页表中的虚拟地址可能有很多,但是物理地址可能还没有分配好,所以再继续访问的时候发现物理地址没有分配好,此时OS就会暂停访问,然后在物理地址中开辟空间,并且修改页表,然后继续执行访问,这个操作叫做缺页中断。

页表中还存在一个字段,它表示的是该地址是否分配或者是否有内容。 

4.3 进程的独立性

虚拟地址有很多个,有可能相同,也有可能不同,多个进程通过页表由虚拟地址映射到同一块内存,这些个虚拟地址很可能相同,也有可能不同,通过各自的页表的映射关系之后,所映射的物理地址是完全不一样的,所以即使两个相同虚拟地址的进程,其中一个挂掉了,也不会影响另外一个。

通过页表,让进程映射到不同的物理内存,从而体现了进程具有独立性! 

5. 写时拷贝

在前面说到过当子进程写入的时候,OS会发生写时拷贝,重新开辟一块空间给子进程,那么这个写时拷贝中间还存在许多细节:

1. 当父进程形成子进程的时候,子进程开始写入,那么OS会在何时发生写时拷贝?或者说是在某一时机发生写时拷贝?

当父进程创建子进程的时候,首先将自己的页表读写权限改为只读,然后再创建子进程,但是这个过程用户并不知道,当用户进行写入时,会因为页表转化的权限问题而出错,此时,操作系统就会介入,从而触发重新申请内存的拷贝内容的策略机制,这个就叫做写时拷贝。

2. 反正都是要写入,只重新开辟空间就好了,为什么要拷贝原来的内容呢?

我们写入的操作不一定要把原始数据全部修改,如果不拷贝原始数据,然后写入操作,会导致原始数据的丢失以及不完整。

朋友们、伙计们,美好的时光总是短暂的,我们本期的的分享就到此结束,欲知后事如何,请听下回分解~,最后看完别忘了留下你们弥足珍贵的三连喔,感谢大家的支持!     

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/867996.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GD32实战篇-双向数控BUCK-BOOST-BUCK降压理论基础

本文章基于兆易创新GD32 MCU所提供的2.2.4版本库函数开发 向上代码兼容GD32F450ZGT6中使用 后续项目主要在下面该专栏中发布&#xff1a; https://blog.csdn.net/qq_62316532/category_12608431.html?spm1001.2014.3001.5482 感兴趣的点个关注收藏一下吧! 电机驱动开发可以跳转…

【驱动篇】龙芯LS2K0300之ADC驱动

实验目的 由于LS2K0300久久派开发板4.19内核还没有现成可用的ADC驱动&#xff0c;但是龙芯官方的5.10内核已经提供了ADC驱动&#xff0c;想要在4.19内核使用ADC就要参考5.10内核移植驱动&#xff0c;本次实验主要是关于ADC驱动的移植和使用 驱动移植 主要的驱动代码主要有3个…

【面向就业的Linux基础】从入门到熟练,探索Linux的秘密(十二)-管道、环境变量、常用命令

大致介绍了一下管道、环境变量、一些常用的基本命令&#xff0c;可以当作学习笔记收藏学习一下&#xff01;&#xff01;&#xff01; 文章目录 前言 一、管道 二、环境变量 1.概念 2.查看 3.修改 4.常用环境变量 三、系统状况 总结 前言 大致介绍了一下管道、环境变量、一些常…

【数据结构与算法】快速排序霍尔版

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《数据结构与算法》 期待您的关注 ​

#数据结构 笔记一

数据结构是计算机存储、组织数据的方式。 数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。数据结构是带有结构特性的数据元素的集合&#xff0c;它研究的是数据的逻辑结构和物理结构以及它们之间的相互关系&#xff0c;并对这种结构定义相适应的运算&#xff0…

STM32实现硬件IIC通信(HAL库)

文章目录 一. 前言二. 关于IIC通信三. IIC通信过程四. STM32实现硬件IIC通信五. 关于硬件IIC的Bug 一. 前言 最近正在DIY一款智能电池&#xff0c;需要使用STM32F030F4P6和TI的电池管理芯片BQ40Z50进行SMBUS通信。SMBUS本质上就是IIC通信&#xff0c;项目用到STM32CubeMXHAL库…

华为机试HJ51输出单向链表中倒数第k个结点

华为机试HJ51输出单向链表中倒数第k个结点 题目&#xff1a; 想法&#xff1a; 因为要用链表&#xff0c;且要找到倒数第k个结点&#xff0c;针对输入序列倒叙进行构建链表并找到对应的元素输出。注意因为有多个输入&#xff0c;要能接受多次调用 class Node(object):def __…

OSS存储桶漏洞总结

简介 OSS&#xff0c;对象存储服务&#xff0c;对象存储可以简单理解为用来存储图片、音频、视频等非结构化数据的数据池。相对于主机服务器&#xff0c;具有读写速度快&#xff0c;利于分享的特点。 OSS工作原理&#xff1a; 数据以对象&#xff08;Object&#xff09;的形式…

mac|Mysql WorkBench 或终端 导入 .sql文件

选择Open SQL Script导入文件 在第一行加入use 你的schema名字&#xff0c;相当于选择了这个schema 点击运行即可将sql文件导入database 看到下面成功了即可 这时候可以看看左侧的目标database中有没有成功导入table&#xff0c;如果没有看到的话&#xff0c;可以点一下右上角的…

25_嵌入式系统总线接口

目录 串行接口基本原理 串行通信 串行数据传送模式 串行通信方式 RS-232串行接口 RS-422串行接口 RS-485串行接口 RS串行总线总结 RapidIO高速串行总线 ARINC429总线 并行接口基本原理 并行通信 IEEE488总线 SCSI总线 MXI总线 PCI接口基本原理 PCI总线原理 PC…

CSS【详解】长度单位 ( px,%,em,rem,vw,vh,vmin,vmax,ex,ch )

px 像素 pixel 的缩写&#xff0c;即电子屏幕上的1个点&#xff0c;以分辨率为 1024 * 768 的屏幕为例&#xff0c;即水平方向上有 1024 个点&#xff0c;垂直方向上有 768 个点&#xff0c;则 width:1024px 即表示元素的宽度撑满整个屏幕。 随屏幕分辨率不同&#xff0c;1px …

【大模型LLM面试合集】大语言模型基础_LLM为什么Decoder only架构

LLM为什么Decoder only架构 为什么现在的LLM都是Decoder only的架构&#xff1f; LLM 是 “Large Language Model” 的简写&#xff0c;目前一般指百亿参数以上的语言模型&#xff0c; 主要面向文本生成任务。跟小尺度模型&#xff08;10亿或以内量级&#xff09;的“百花齐放”…

SpringBoot运维篇

工程打包与运行 windows系统 直接使用maven对项目进行打包 jar支持命令行启动需要依赖maven插件支持&#xff0c;打包时须确认是否具有SpringBoot对应的maven插件 <build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><ar…

最小表示法

#define _CRT_SECURE_NO_WARNINGS #include<bits/stdc.h> using namespace std;const int N (int)3e5 5; int n; int a[N * 2];int main() {cin >> n;for (int i 0; i < n; i) {cin >> a[i];a[i n] a[i]; // 构造成链}int l 0, r 1; // 一开始 r …

昇思12天

FCN图像语义分割 1. 主题和背景 FCN是由UC Berkeley的Jonathan Long等人于2015年提出的&#xff0c;用于实现图像的像素级预测。 2. 语义分割的定义和重要性 语义分割是图像处理和机器视觉中的关键技术&#xff0c;旨在对图像中的每个像素进行分类。它在很多领域有重要应用…

npm安装完yarn还是用不了?

前言 解决 找到你的包全局安装目录 复制路径&#xff0c;配置到Path全局环境变量 结果 不过发现在idea里还是用不了&#xff0c;此时你会想&#xff0c;这什么烂贴&#xff0c;没一点屁用 不过在重启idea之后&#xff0c;你也许就不会这么想了

秋招提前批面试经验分享(下)

⭐️感谢点开文章&#x1f44b;&#xff0c;欢迎来到我的微信公众号&#xff01;我是恒心&#x1f60a; 一位热爱技术分享的博主。如果觉得本文能帮到您&#xff0c;劳烦点个赞、在看支持一下哈&#x1f44d;&#xff01; ⭐️我叫恒心&#xff0c;一名喜欢书写博客的研究生在读…

数据结构/作业/2024/7/7

搭建个场景: 将学生的信息&#xff0c;以顺序表的方式存储&#xff08;堆区)&#xff0c;并且实现封装函数︰1】顺序表的创建&#xff0c; 2】判满、 3】判空、 4】往顺序表里增加学生、5】遍历、 6】任意位置插入学生、7】任意位置删除学生、8】修改、 9】查找(按学生的学号查…

网络安全基础-2

知识点 1.网站搭建前置知识 域名&#xff0c;子域名&#xff0c;DNS&#xff0c;HTTP/HTTPS&#xff0c;证书等 注册购买域名&#xff1a;阿里云企航_万网域名_商标注册_资质备案_软件著作权_网站建设-阿里云 2.web应用环境架构类 理解不同WEB应用组成角色功能架构: 开发语…

DHCP的原理及配置

目录 一、了解DHCP服务 1.什么是DHCP 1.1DHCP广播 2.使用DHCP的好处 2.1为什么使用DHCP 3.DHCP的模式与分配方式 3.1分配方式 3.2模式 二、DHCP工作原理 1.四次回话 2.重新登录 3.更新租约 4.扩展 三、安装DHCP服务 四、DHCP局部配置并且测试 五、使用…