【数智化人物展】天云数据CEO雷涛:大模型连接数据库 为数智化提供高价值数据...

ea5b9b851237f1c553a5376fe3a1d47d.png

雷涛

本文由天云数据CEO雷涛投递并参与由数据猿联合上海大数据联盟共同推出的《2024中国数智化转型升级先锋人物》榜单/奖项评选。

e8c1a80ca877d653d073b8599a77dc32.png




大数据产业创新服务媒体

——聚焦数据 · 改变商业


这几天,奥特曼讲SQL数据库和大模型结合起来会产生什么样的化学变化引起行业关注。为什么大模型要接数据库?

大模型训练通常需要大量的数据。这些数据往往存储在各种数据库中。数据库提供了结构化和非结构化的数据源,供大模型在训练过程中使用。数据库系统能够高效地存储、检索和管理大量数据,使得大模型能够从中获取所需的信息。例如,训练语言模型时,数据库可以存储大规模的文本数据,方便模型进行访问和处理。

要实现数智化,大模型需要连接价值密度最高、逻辑性强、动态且鲜活的数据,这些数据都跟生产经营的交易相关,比如股票信息、金融账户、医院里挂号信息,我们知道这些数据都不在静态的文档、文献或报告里,而是在数据库里。但是目前大模型所依赖的数据资源局限于静态文献中的知识,这在一定程度上限制了其对于高价值数据的全面获取,尤其是那些存储在客户私域中的宝贵数据。目前普遍采用的RAG技术将信息检索和生成两个阶段结合起来,通过检索数据库中的相关信息来辅助生成过程,解决大模型数据滞后带来的幻觉问题,提高生成内容的质量。

此外,大模型每走一步都观察人类反馈,朝着人类期望的方向迭代。通过条件概率找到最清晰的意图,大幅提升了结果的准确性。因此大模型学习了人类的语言及说话方式以后,它还要了解人类的商业逻辑,对数据库的数据做知识的封装,进一步服务数智化。

那么,大模型如何为数智化提供高价值的数据?

这就需要对数据库里的数据做快速的服务和封装。大模型对数据库里的数据做服务和封装并不仅仅是一个NL2SQL自然语言转换的问题,也不是直接从已经写好的SQL里去检索出答案。那我们如何面向动态的弹性的业务逻辑,从动态的生成类SQL逻辑从数据库中拿到准确的结果。

要实现这个目标,需要应对几个挑战:

1、如何把模糊的意图理解token语句转变成精确的SQL?

很多人都尝试使用各种国内外大模型编写 SQL,但生成的SQL大多无法直接运行成功,所以市场上形成了大模型总在一本正经的胡说八道的认知。不少人放弃并恢复到手动编写SQL的方式。我们用100个场景做了实验,目前最好的大模型真正能够直接生成可以运行且结果准确的SQL只有3%左右,得出的结论是目前大模型仅仅只能做分析师的副驾驶。

既然要盯到一个强逻辑的体系,光靠RAG肯定不够,增加向量索引也只是把逻辑结果就已经做好SQL的表的结果反馈出来,但它不能够动态地生成弹性的业务逻辑。那么怎么能够动态地生成业务逻辑,天云数据进一步通过基于表的Schema、相关的实例SQL、业务逻辑上下文相关示例,通过上下文逻辑的方式进行优化准确率大幅提升。可以使模糊的意图经过多个上下文的提醒做到了精准的SQL的转换。

2、组织数据需要数据编织才能快速地把基于意图的数据在底层表达出来。

仅仅通过上下文逻辑实现精准SQL优化还不够,还需要数据编织技术进一步加强。用传统的主数据管理,强逻辑性的内容是不能够适应动态的token意图表达的,因此数据编织是一个非常核心的内容。多种不同类型的数据源共同编织到一起,在编织之上定义数据产品。数据产品是一组业务的表达,它是一个虚拟物化视图,与传统物化视图不同,他们储在缓存中,并能够动态更新。在数据产品之上,我们通过算法可以动态为数据产品自行打标签,这个标签,是从数据结构和数据中提取的多个标签,实时动态的标签可以为大模型的提供更加实时、丰富的上下文,使意图理解更加精确。数据编织使数据不局限于一个业务系统,也不用关心底层的存储,无论Mysql、Oracle还是国产数据库都可以纳入一套SQL逻辑来管理。

3、大模型连数据库是强高并发任务,底层HTAP数据库是最佳选项。

数据仓库里的批处理操作演变成了高并发的交互性、实时性内容。所以这底层的数据库不是一个简单的NewSQL就能完成的而是需要HTAP这样的同时拥有TP的高并发能力、AP的海量数据快速响应能力。

数据仓库发展了这么多年,技术上大多以大规模并行处理(MPP)、内存计算、列式存储为核心,也就是离线数仓互联网化后的替代方案。但是比较大的实时表进来以后,数据仓库无法支撑,必须得放到一个大的库里来做实时。当然,另一种技术路线是,采用存算一体,或者可以像Facebook一样,采用存算分离架构。以金融行业数据仓库的优化为例,如果要对传统数仓进行实时化升级,会分两部分工作,那就是在数据入口和出口端分别做改造。以权益类服务为例,之前的用户积分都是隔夜算,用户可能几个月后到商场拿积分去兑换一份商品,后端只需要做一次离线服务,就可以了。但是现在服务变了,用户刷完卡,到底是给一张电影票,还是一个电动牙刷?这是个性化服务,必须实时计算,并且要嵌套在整个服务场景里。这时,入口端就可以采用类似于Flink这样的架构,但是很快又发现,银行的一个核心业务就有上千张表,很难用一个简单的 Flink 架构支撑传统的大型银行系统,所以MPP +Hadoop这种奇葩的架构才会出现,而基于新兴技术的HTAP,则对MPP +Hadoop这种架构彻底做了一个洗牌。对于银行业务场景来说,一个用户身份会涉及到卡片、账户、人三层结构,而核实一个用户的建权和授权,就要通过三张这个几千万、上亿记录的表结构完成,很难通过单表的形式拉宽表来操作。而HTAP在银行业务互联网场景里,或者说在传统信息化向产业互联网升级过程中,就表现出独特优势,既满足了MPP 的特性,又能覆盖掉Hadoop能力。

通过以上三点,实现大模型为数智化提供高价值的数据。

大模型连接数据库的连接,能更快地推动行业数智化,但厂商必须同时要做数据库和机器学习才能干这种事儿。现在市场上出现了很多同时做数据库和AI的公司,Databricks是其中的代表。Databricks基于Spark从批处理开始向下做湖仓一体向上延伸至AI。天云数据同时做数据库和AI是因为10年前在云基地时,我就发现了数据供给侧和消费侧最小闭环的存在。当时运营商的内容平台项目需要做动漫、游戏、音乐小说的客户画像分解,传统的Oracle数据库无法支撑亿级用户带来的海量上网日志,数据供给侧升级,转而用HBase等分布式开源组件处理。而数据消费侧也不是SQL、可视化、报表、表盘等,而是升级为机器学习(ML)等新兴的数据处理方法。当看到数据的供给和消费升级,我便带着团队从云基地出来创立天云数据完成最小级闭环时,自然而然会做供给侧的数据库和消费侧的AI两条产品线,我们是市场上最早同时做数据库和机器学习赛道的。

为什么OpenAI要收购Rockset?近期,OpenAI花了5亿美元(约36亿人民币)收购了企业搜索和分析初创公司Rockset。数据库作为企业级数据价值密度最高的基础设施,它是生成式智能绕不开的技术壁垒,所以OpenAI才会打破自己的收购记录购买高并发的混合搜索产品。但是企业级数据库的赛道并不仅仅要解决IO问题,更要解决数据编织的存算分离、物化视图、虚拟数仓、联邦计算等一系列业务逻辑的技术实践才能够支撑大语言模型更为Native的人机交互逻辑对数据的服务方法。这些都需要科创公司就绪全栈AI的能力,尤其是LLM之上的AI Infra,没有所谓秘方和捷径。

·申报人“雷涛”简介:

博士后工作站企业导师,中关村高聚人才,两度CAAI人工智能奖项“吴文俊人工智能科学技术奖”获得者,智能投研技术联盟(ITL)“高级技术顾问”,北京科技协理事;新华社媒体融合生产与技术系统国家重点实验室特约研究员

点击文末左下角“阅读原文”链接还可查看天云数据官网


以上由雷涛投递申报的观点性文章,最终将会角逐由数据猿与上海大数据联盟联合推出的《2024中国数智化转型升级先锋人物》榜单/奖项

该榜单最终将于7月24日北京举办的“2024企业数智化转型升级发展论坛——暨AI大模型趋势论坛”现场首次揭晓榜单,并举行颁奖仪式,欢迎报名莅临现场:

dad020cbf8e799505a15af73df9659fc.jpeg

ae0f2722f35807e552a8b5675df39339.png

b5d7cb41fd0f557661ba0facde8ade52.png

f0692485386b2500f4530e957cdcd397.jpeg

33c94e170a2cb23c3920ddcbbfbdb892.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/867916.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大模型备案全网最详细流程【附附件】

本文要点:大模型备案最详细说明,大模型备案条件有哪些,《算法安全自评估报告》模板,大模型算法备案,大模型上线备案,生成式人工智能(大语言模型)安全评估要点,网信办大模型备案。 大模型备案安…

中国石油大学(华东)24计算机考研数据速览,计科学硕复试线288分!

中国石油大学(华东)计算机与通信工程学院是中国石油大学(华东)十三个教学院部之一,其前身是创建于1984年的计算机科学系,2001年撤系建院。伴随着学校50多年的风雨历程,计算机与通信工程学院也已经有了20多年的发展历史…

5.pwn Linux的延迟绑定机制

动态链接库 我们程序开发过程中都会用到系统函数,比如read,write,open等等 这些系统函数不需要我们实现,因为系统已经帮你完成这些工作,只需要调用即可,存放这些函数的库文件就是动态链接库。 通常情况下&…

[激光原理与应用-100]:南京科耐激光-激光焊接-焊中检测-智能制程监测系统IPM介绍 - 4 - 3C电池行业应用 - 不同的电池类型、焊接方式类型

目录 前言: 一、激光在3C行业的应用概述 1.1 概述 1.2 激光焊接在3C-电池行业的应用 1.3 动力电池的激光焊接工艺 1.3.1 概述 1.3.2 动力电池常见的焊接应用 1.电池壳体与盖板焊接 2.电池防爆阀密封 焊接 二、不同的电池的外形 2.1 软包锂电池 2.1.1 概述…

《机器学习》读书笔记:总结“第4章 决策树”中的概念

💠决策树 基于树结构进行决策。 一棵决策树包括: 一个 根节点(起点)若干 叶节点(没有下游节点的节点)若干 内部节点(分支节点) 即: #mermaid-svg-Mxe3d0kNg29PM2n8 {font-family:"treb…

Open3D 删除点云中重叠的点(方法二)

目录 一、概述 1.1原理 1.2应用 二、代码实现 三、实现效果 3.1原始点云 3.2处理后点云 3.3数据对比 一、概述 在点云处理中,重叠点(即重复点)可能会对数据分析和处理的结果产生负面影响。因此,删除重叠点是点云预处理中常…

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题 闪烁现状解决方案 闪烁现状 我们写一个非常简单的页面&#xff1a; import { Button } from antdexport default async function Page() {return <><Button typeprimary>AAA</Button></> }NextJs…

《昇思25天学习打卡营第14天|onereal》

第14天学习内容如下&#xff1a; Diffusion扩散模型 本文基于Hugging Face&#xff1a;The Annotated Diffusion Model一文翻译迁移而来&#xff0c;同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件&#xff0c…

张量分解(1)——初探张量

&#x1f345; 写在前面 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;这里是hyk写算法了吗&#xff0c;一枚致力于学习算法和人工智能领域的小菜鸟。 &#x1f50e;个人主页&#xff1a;主页链接&#xff08;欢迎各位大佬光临指导&#xff09; ⭐️近…

SpEL表达式相关知识点

SpEL表达式 知识点 Spel概述 Spring 表达式&#xff0c;即 Spring Expression Language&#xff0c;简称 SpEL。 那么是什么SpEL表达式呢&#xff1f; SpEL (Spring Expression Language) 是一种在Spring框架中用于处理表达式的语言。SpEL中的表达式可以支持调用bean的方法…

IntelliJ IDEA菜单不见了设置找回方法

通过CtrAltS键按出设置 找到View,然后自定义一个快捷键,然后保存 使用自定义快捷键弹出改界面,点击Main Menu即可

传感器标定(一)摄像头内参标定

一、使用ROS进行手动标定安装 1、安装 image-view &usb_cam ⽤于驱动相机 sudo apt-get install ros-melodic-image-view sudo apt-get install ros-melodic-usb-cam2、查看系统视频设备 v4l2- ctl -d /dev/video0 --all 查询所有相机具体的参数包括width和height ls /…

内容监管与自由表达:Facebook的平衡之道

在当今数字化信息社会中&#xff0c;社交媒体平台不仅是人们交流和获取信息的主要渠道&#xff0c;也是自由表达的重要舞台。Facebook&#xff0c;作为全球最大的社交网络平台&#xff0c;连接了数十亿用户&#xff0c;形成了一个丰富多样的信息生态。然而&#xff0c;如何在维…

vue项目中 i18n(vue-i18n) 国际化解决方案,从安装到使用

1、国际化介绍 国际化&#xff08;Internationalization&#xff0c;通常缩写为"i18n"&#xff09;是指设计和开发软件应用程序&#xff0c;使其能够轻松地适应不同的语言、文化和地区的需求。国际化不仅仅涉及将文字翻译成其他语言&#xff0c;还包括调整日期、时间…

数据列表组件-报表

当数据在后端接口查询到&#xff0c;需要在页面展示出来&#xff0c;如果项目有很多report &#xff0c;可以把列表做一个组件 效果如下&#xff1a; js代码&#xff1a; <!DOCTYPE html> <html> <head><meta charset"utf-8" /><title&g…

中英双语介绍东京的商业核心区域:日本桥(Nihonbashi)

中文版 日本的日本桥&#xff08;Nihonbashi&#xff09; 位置 日本桥位于东京中央区&#xff0c;是东京市中心的重要商业和金融区之一。日本桥的名字来源于这里的同名桥梁“日本桥”&#xff0c;该桥建于江户时代&#xff0c;横跨日本桥川&#xff0c;是当时五街道的起点&a…

作业训练二编程题3. 数的距离差

【问题描述】 给定一组正整数&#xff0c;其中最大值和最小值分别为Max和Min, 其中一个数x到Max和Min的距离差定义为&#xff1a; abs(abs(x-Max)-(x-Min)) 其中abs()为求一个数的绝对值 【输入形式】 包括两行&#xff0c;第一行一个数n&#xff0c;表示第二行有n个正整数…

Linux内核链表使用方法

简介&#xff1a; 链表是linux内核中最简单&#xff0c;同时也是应用最广泛的数据结构。内核中定义的是双向链表。 linux的链表不是将用户数据保存在链表节点中&#xff0c;而是将链表节点保存在用户数据中。linux的链表节点只有2个指针(pre和next)&#xff0c;这样的话&#x…

AcWing 1260:二叉树输出

【题目来源】https://www.acwing.com/problem/content/1262/【题目描述】 树的凹入表示法主要用于树的屏幕或打印输出&#xff0c;其表示的基本思想是兄弟间等长&#xff0c;一个结点的长度要不小于其子结点的长度。 二叉树也可以这样表示&#xff0c;假设叶结点的长度为 1&…

SAP_MM模块-特殊业务场景下的系统实现方案

一、业务背景 目前公司有一种电商业务&#xff0c;卖的是备品配件&#xff0c;是公司先跟供应商采购&#xff0c;然后再销售给客户&#xff0c;系统账就是按照正常业务来流转&#xff0c;公司进行采购订单入库&#xff0c;然后销售订单出库。 不过这种备品配件&#xff0c;实…