【matlab】分类回归——智能优化算法优化径向基神经网络

径向基(Radial Basis Function, RBF)神经网络

一、基本概念

径向基函数(RBF):是一个取值仅仅依赖于离原点(或某一中心点)距离的实值函数。在RBF神经网络中,最常用的径向基函数是高斯核函数,其形式为:

\varphi(x)=\exp(-\frac{x^{2}}{2\sigma^{2}})

其中,x​为核函数中心,σ为函数的宽度参数(或方差),控制了函数的径向作用范围。

二、网络结构

RBF神经网络是一种三层神经网络,包括输入层、隐层和输出层。其结构特点如下:

  1. 输入层:仅起到输入数据的作用,与隐层之间的连接权值通常为1。
  2. 隐层:含有多个径向基神经元(激活函数为RBF),将低维非线性可分的输入映射到高维线性可分的空间。隐层节点的激活函数对输入局部响应,当输入靠近基函数中央范围时,隐层节点将产生较大的输出;远离中心点时,输出将呈指数衰减。
  3. 输出层:含有线性神经元(激活函数为线性函数),最终的输出是隐层神经元输出的线性加权和。

三、工作原理

RBF神经网络的基本思想是用RBF作为隐单元的“基”构成隐含层空间,将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和。网络的权可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。

四、学习算法

RBF神经网络的学习问题主要是求解基函数的中心、方差以及隐含层到输出层的权值。常用的学习算法包括自组织选取中心学习方法,该方法分为无监督学习过程和有监督学习过程两个阶段:

  1. 无监督学习过程:求解隐含层基函数的中心与方差。通常使用K-means聚类算法确定RBF的中心,并根据各中心点之间的距离来确定隐节点的方差。
  2. 有监督学习过程:求解隐含层到输出层之间的权值。一般采用梯度下降法或最小二乘法等优化算法,通过训练样本集来获得满足监督要求的网络中心和其他权重参数。

五、优点与应用

RBF神经网络具有以下优点:

  1. 非线性拟合能力强:能够以任意精度逼近任意连续的非线性函数。
  2. 全局最优逼近:通过选择适当的中心点和宽度参数,可以实现全局最优逼近。
  3. 训练简洁、学习收敛速度快:由于隐层到输出层的映射是线性的,因此可以通过求解线性方程组直接得到权值,避免了复杂的迭代计算。

RBF神经网络已被广泛应用于函数逼近、语音识别、模式识别、图像处理、自动控制和故障诊断等领域。

六、与BP神经网络的比较

RBF神经网络与BP神经网络在结构和工作原理上存在一些差异:

  1. 逼近方式:BP神经网络是对非线性映射的全局逼近,而RBF神经网络是局部逼近。
  2. 网络结构:BP神经网络可以有多个隐含层,而RBF神经网络通常只有一个隐含层。
  3. 训练速度:由于RBF神经网络的隐层到输出层的映射是线性的,因此训练速度通常比BP神经网络快。

智能优化算法

智能优化算法通过模拟自然界或生物群体的某些行为规律,在搜索空间中寻找最优解或近似最优解。在优化RBF网络中,智能优化算法主要用于以下几个方面:

  1. 参数优化:包括隐含层神经元的中心位置、宽度以及输出层的权重等参数的优化。这些参数直接影响网络的映射能力和泛化性能。
  2. 结构优化:确定隐含层神经元的最佳数量。过多的神经元会增加计算复杂度,而过少的神经元则可能无法充分表示输入数据的特征。

常见的智能优化算法

在优化RBF网络中,常用的智能优化算法包括遗传算法、粒子群优化算法、蚁群算法等。这些算法各有特点,适用于不同的优化场景。

  1. 遗传算法:基于生物进化原理,通过选择、交叉和变异等操作来寻找最优解。遗传算法在优化RBF网络时,可以将网络的参数和结构编码为染色体,通过迭代进化来寻找最优的网络参数和结构。
  2. 粒子群优化算法:模拟鸟群或鱼群等生物群体的行为规律,通过粒子之间的信息共享和协作来寻找最优解。在优化RBF网络时,每个粒子可以代表一组网络参数,通过不断迭代更新粒子的位置和速度来寻找最优解。
  3. 蚁群算法:模拟蚂蚁觅食过程中的信息素传递机制,通过蚂蚁之间的信息素交流来寻找最优路径。虽然蚁群算法在优化RBF网络中的应用相对较少,但其启发式的搜索策略仍然具有一定的参考价值。

灰狼优化算法(Grey Wolf Optimizer, GWO)

一、算法原理

灰狼优化算法基于灰狼的社会等级和捕猎策略进行数学建模。灰狼群被分为四个等级:首领(Alpha, α)、副手(Beta, β)、侦察兵(Delta, δ)和欧米伽(Omega, ω)。算法通过模拟灰狼的社会合作行为来寻找最优解。

  1. 社会等级:在算法开始时,会随机生成一群灰狼(解的候选者),通过评估每个解的适应度来模拟社会等级。其中,最好的解被认为是Alpha(α),第二和第三好的解分别是Beta(β)和Delta(δ),其余的解则被视为Omega(ω)。这个社会结构帮助指导搜索过程,确保多样性和算法的收敛。

  2. 捕食行为:灰狼的捕食行为被简化为数学模型,用以指导灰狼(解的搜索代理)向猎物(最优解)靠近。这个过程涉及到“环绕猎物”、“追踪猎物”和“攻击猎物”三个阶段。

    • 环绕猎物:通过数学公式模拟灰狼环绕猎物的行为,计算出灰狼应该在搜索空间中的位置,这个位置取决于当前的Alpha、Beta和Delta的位置。
    • 追踪猎物:算法会根据猎物的动态位置更新灰狼的位置,以模拟追踪行为。
    • 攻击猎物:当灰狼(搜索代理)足够接近最优解(猎物),算法会进行细微的调整,模拟攻击行为,以精确找到最优解。
二、算法流程

灰狼优化算法的一般流程如下:

  1. 生成初始群体:随机生成包含N个搜索代理(灰狼)的群体,每个灰狼代表解空间中的一个可能解。

  2. 初始化参数:设置算法的迭代次数、搜索代理的数量等。

  3. 评估适应度:计算每个搜索代理(灰狼)的适应度。

  4. 选择领导者:根据适应度,选择前三名最优秀的灰狼作为Alpha(最优解)、Beta(次优解)和Delta(第三优解)。

  5. 更新位置:根据Alpha、Beta和Delta的位置,更新每个Omega灰狼的位置。这个更新过程模拟了灰狼在狩猎过程中对猎物位置的估计和相应的移动。

  6. 迭代更新:重复上述步骤,直到满足停止条件(例如,达到最大迭代次数或达到足够好的解)。

三、算法特点
  1. 操作简单:灰狼优化算法具有相对简单的算法结构和较少的参数设置。

  2. 鲁棒性强:算法能够适应不同类型的优化问题,并在多种条件下保持稳定和适应性。

  3. 收敛速度快:由于灰狼算法在搜索过程中综合考虑了多个领导者(Alpha、Beta和Delta)的信息,它可以有效地平衡探索和开发的需求,从而加快收敛速度。

  4. 精确度较高:通过模拟灰狼的社会结构和狩猎行为,灰狼优化算法能够精确地找到问题的最优解或近似最优解。

四、应用场景

灰狼优化算法由于其独特的搜索机制和高效的全局探索能力,在多个领域都有广泛的应用。例如:

  • 工程优化:在工程设计和建筑领域,灰狼算法被用来优化结构设计,如桥梁或建筑物的稳定性和耐久性。
  • 能源管理:在能源行业,该算法用于优化电网的运行,如在可再生能源系统中平衡供需或优化电池存储系统的管理。
  • 交通系统优化:灰狼算法可以应用于交通网络设计,如优化道路布局或交通信号灯的调度。
  • 机器学习:在机器学习领域,灰狼算法被用来选择或优化特征,增强学习模型的准确性和效率。
  • 调度问题:在制造业和物流领域,该算法用于优化生产线的调度,如确定最优的作业顺序或运输路线。
  • 环境管理:灰狼算法还被用于环境科学领域,如优化水资源管理或评估环境影响。

代码示例

% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problemsBeta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problemsDelta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);l=0;% Loop counter% Main loop
while l<Max_iterfor i=1:size(Positions,1)  % Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               % Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update Alpha, Beta, and Deltaif fitness<Alpha_score Alpha_score=fitness; % Update alphaAlpha_pos=Positions(i,:);endif fitness>Alpha_score && fitness<Beta_score Beta_score=fitness; % Update betaBeta_pos=Positions(i,:);endif fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score Delta_score=fitness; % Update deltaDelta_pos=Positions(i,:);endenda=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0% Update the Position of search agents including omegasfor i=1:size(Positions,1)for j=1:size(Positions,2)     r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A1=2*a*r1-a; % Equation (3.3)C1=2*r2; % Equation (3.4)D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1r1=rand();r2=rand();A2=2*a*r1-a; % Equation (3.3)C2=2*r2; % Equation (3.4)D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       r1=rand();r2=rand(); A3=2*a*r1-a; % Equation (3.3)C3=2*r2; % Equation (3.4)D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)endendl=l+1;    Convergence_curve(l)=Alpha_score;% 保存每次迭代的最优适应度值Best_scores = Convergence_curve;% 计算平均值、标准差和最差值average_objective = mean(Best_scores);std_deviation = std(Best_scores);worst_score = max(Best_scores);% 打印结果disp(['Best_scores: ', num2str(Best_scores)]);disp(['Average_objective: ', num2str(average_objective)]);disp(['Standard_deviation: ', num2str(std_deviation)]);disp(['Worst_score: ', num2str(worst_score)]);end

代码实现

智能优化算法优化RBF网络的过程通常包括以下几个步骤:

  1. 初始化:随机生成一组初始的网络参数和结构(如遗传算法中的初始种群)。
  2. 评价:使用训练数据集对当前的网络进行训练,并计算网络的性能指标(如均方误差)。
  3. 优化:根据智能优化算法的搜索策略,对当前的网络参数和结构进行调整(如遗传算法中的选择、交叉和变异操作)。
  4. 迭代:重复步骤2和步骤3,直到满足停止条件(如达到最大迭代次数或性能指标不再显著提高)。
  5. 输出:输出优化后的网络参数和结构,并使用测试数据集对优化后的网络进行验证。

定义目标函数

使用径向基函数(Radial Basis Function, RBF)神经网络来预测一组训练数据的输出,并通过交叉验证来评估模型的平均准确率,以此作为个体的适应度


function fitness = fobj(pop)% 加载数据集和索引p_train = evalin('base', 'P_train');t_train = evalin('base', 'T_train');% 提取最优参数spread = pop(1);% 初始化准确率数组accuracies = zeros(1, size(p_train, 1));% 进行交叉验证cv = cvpartition(size(p_train, 1), 'KFold', 10);for k = 1:cv.NumTestSets% 创建 RBF 神经网络net = newrbe(p_train, t_train, spread);% 在测试集上进行预测Y_train = sim(net, p_train);% 数据反归一化T_sim = vec2ind(Y_train);T_true = vec2ind(t_train);% 计算预测准确率accuracy = sum(T_sim == T_true) / length(T_true);% 保存准确率accuracies(k) = accuracy;end% 计算平均准确率作为适应度fitness = mean(accuracies);
end

主函数

close all
clc
%%  读取数据集
% load data
%%  划分数据集
for ii=1:size(Tdata,2)nanindex=isnan(Tdata(:,ii));Tdata(nanindex,:)=[];
end
labels=Tdata(:,end);                  %classes
attributesData=Tdata(:,1:end-1);      % data[rows,colms]=size(attributesData);  %size of data    [trainIdx,~,testIdx]=dividerand(rows,0.8,0,0.2);
P_train=attributesData(trainIdx,:);   %training data
P_test=attributesData(testIdx,:);     %testing data
T_train=labels(trainIdx);            %training labels
T_test=labels(testIdx);              %testing labels%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);% %%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input,0,1);
t_train = ind2vec(T_train);
t_test  = ind2vec(T_test );%%  灰狼优化算法参数设置
pop=20;%种群数量
maxiter=30;%迭代次数
c=0.1;%优化参数下限
d=1000;%优化参数上限
dim=1;%优化参数维度
fobj1 = @fobj;%%  参数优化[bestCVmse, Best_pos,Convergence_curve] =GWO(pop, maxiter,c,d,dim,fobj1);%%  适应度曲线
figure
plot(1 : length(Convergence_curve), Convergence_curve, 'b-', 'LineWidth', 2);
title('DBO最佳适应度曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 10);
ylabel('适应度', 'FontSize', 10);
xlim([1, length(Convergence_curve)])
grid on%%  创建网络
spread = Best_pos;                          
net=newrbe(p_train, t_train, spread);% 在测试集上进行预测
Y= sim(net,p_train);
Y1= sim(net, p_test);
T_sim1 = vec2ind(Y);
T_sim2 = vec2ind(Y1);% 计算预测准确率
accuracy1 = sum((T_sim1 ==  T_train))/ M * 100;
accuracy2 = sum((T_sim2 ==  T_test))/ M * 100; %% 打印结果
fprintf('精确度(训练集): %.2f%%\n', accuracy1);
fprintf('精确度(测试集): %.2f%%\n', accuracy2);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/867106.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用patch-package自动修改node_modules中的内容/打补丁

背景 在使用VuePress搭建个人博客的过程中&#xff0c;我需要使用到一个用来复制代码块的插件uepress-plugin-nuggets-style-copy。 问题&#xff1a;插件可以正常安装&#xff0c;但是启动会报错。通过查看错误信息&#xff0c;定位是插件中的copy.vue文件出现错误&#xff0c…

将循环转化为递归的三种方法,求1+2+3……+n等差数列

解法一&#xff1a;使用公共变量s&#xff0c;递归循环1~n加到s上 #include<bits/stdc.h> using namespace std; int n,s; void fun(int i){if(i<n){ssi;fun(i1);}}int main(){cin>>n;fun(1);cout<<s;return 0; } 解法二&#xff1a;通过层层累加&#x…

C语言自定义类型——联合体、枚举

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、联合体&#xff08;一&#xff09;、联合体的声明&#xff08;二&#xff09;、联合体的特点&#xff08;三&#xff09;、联合体大小的计算&#xff01;&a…

二维树状数组区域查询

落谷4514 过关代码如下 #define _CRT_SECURE_NO_WARNINGS #include<bits/stdc.h> using namespace std; //#define int long longconst int N 2050; int t1[N][N], t2[N][N], t3[N][N], t4[N][N]; int lowbit(int x) { return x & (-x); } int n, m; void update(…

Mybatis实现RBAC权限模型查询

RBAC权限模型 Role-Based Access Control&#xff0c;中文意思是&#xff1a;基于角色&#xff08;Role&#xff09;的访问控制。这是一种广泛应用于计算机系统和网络安全领域的访问控制模型。 简单来说&#xff0c;就是通过将权限分配给➡角色&#xff0c;再将角色分配给➡用…

应急响应-网站入侵篡改指南Webshell内存马查杀漏洞排查时间分析

查看146天的内存马 方法&#xff1a; 1. 日志 这种地址一般在扫描 还要注意post传参注入 对其进行全局定位 发现有sql注入 我们可以也尝试去sqlmap注入 如果以这种方式注入ua头就会改变 2. 了解自己的中间件&#xff0c;框架&#xff0c;cve&#xff0c;等 因为不知道时间…

Unity中TimeLine的一些用法

Unity中TimeLine的一些用法 概念其他 概念 无Track模式&#xff08;PlayableAsset、PlayableBehaviour&#xff09; 1. 两者关系 运行在PlayableTrack中作用 PlayableBehaviour 实际执行的脚本字段并不会显示在timeline面板上 PlayableAsset PlayableBehaviour的包装器&#x…

[AI Perplexica] 安装指南:轻松部署AI驱动的开源搜索引擎

[AI Perplexica] AI驱动的开源搜索引擎[AI Perplexica] 深入解析&#xff0c;AI 架构揭秘 之前&#xff0c;我们看过了 Perplexica 的介绍&#xff0c;特点和架构&#xff0c;了解了其工作原理。 今天&#xff0c;我们一起来部署下 安装 docker 安装 docker https://docs.…

设计模式探索:代理模式

1. 什么是代理模式 定义 代理模式是一种结构型设计模式&#xff0c;通过为其他对象提供一种代理以控制对这个对象的访问。代理对象在客户端和实际对象之间起到中介作用&#xff0c;可以在不改变真实对象的情况下增强或控制对真实对象的访问。 目的 代理模式的主要目的是隐…

【IT领域新生必看】Java编程中的神奇对比:深入理解`equals`与`==`的区别

文章目录 引言什么是操作符&#xff1f;基本数据类型的比较示例&#xff1a; 引用类型的比较示例&#xff1a; 什么是equals方法&#xff1f;equals方法的默认实现示例&#xff1a; 重写equals方法示例&#xff1a; equals与的区别比较内容不同示例&#xff1a; 使用场景不同示…

伯克利、斯坦福和CMU面向具身智能端到端操作联合发布开源通用机器人Policy,可支持多种机器人执行多种任务

不同于LLM或者MLLM那样用于上百亿甚至上千亿参数量的大模型&#xff0c;具身智能端到端大模型并不追求参数规模上的大&#xff0c;而是指其能吸收大量的数据&#xff0c;执行多种任务&#xff0c;并能具备一定的泛化能力&#xff0c;如笔者前博客里的RT1。目前该领域一个前沿工…

linux19:程序替换

一&#xff1a;最简单的看看程序替换是什么样的&#xff08;单个进程版&#xff09; 1 #include<stdio.h>2 #include<unistd.h>3 #include<stdlib.h>4 int main()5 {6 printf("Before : I am a process , myPid:%d,myPPid:%d\n",getpid(),getpp…

Java项目:基于SSM框架实现的德云社票务管理系统【ssm+B/S架构+源码+数据库+开题报告+毕业论文】

一、项目简介 本项目是一套基于SSM框架实现的德云社票务管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功…

windows下搭建python+jupyter notebook

一.下载python 下面网址下载python3 https://www.python.org/ 二. 安装jupyter notebook 三. 修改配置 四. 检测是否正常运行

华为OD机试 - 跳马 - 广度优先搜索BFS(Java 2024 D卷 200分)

华为OD机试 2024D卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;D卷C卷A卷B卷&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;每一题都有详细的答题思路、详细的代码注释、样例测…

windows 7 安装IPP协议,支持Internet打印

1 windows 7 安装IPP协议,支持Internet打印 #控制面板--打开或关闭Windows功能 3 复制Printers 文件夹 到 c:\inetpub\wwwroot\,复制msw3prt.dll到c:\windows\system32\ 4 打开IIs管理器 #报错:模块列表中不存在此处理程序所需的指定模块。如果您添加脚本映射处理程序映射&…

Golang | Leetcode Golang题解之第218题天际线问题

题目&#xff1a; 题解&#xff1a; type pair struct{ right, height int } type hp []pairfunc (h hp) Len() int { return len(h) } func (h hp) Less(i, j int) bool { return h[i].height > h[j].height } func (h hp) Swap(i, j int) { h[i], h[j]…

独立开发者系列(20)——扫码登录

&#xff08;1&#xff09;网页端的安全登录设计 很多大型网站都有登录限制。这里以一个案例作为例子完整解析。理解安全的登录设计方式&#xff0c;无论对于以后做自动化&#xff0c;自动登录网站&#xff0c;获取数据&#xff0c;还是自己开发月租类型的系统非常有用。当前一…

从草图到现实:SketchUp 在建筑项目中的独特优势

Sketchup 是全球最受欢迎的建筑可视化平台之一。借助该平台提供的各种工具&#xff0c;您可以创建可供市场使用的逼真项目。Sketchup为什么如此优秀&#xff1f;它对建筑项目有哪些优势&#xff1f;下面&#xff0c;你将看到什么是 Sketchup 以及这个工具的一些重要的优势。 关…

新手如何尽快入门性能测试?

一、学习基础知识 性能测试的基本概念&#xff1a; 性能测试的定义&#xff1a;使用自动化工具&#xff0c;模拟不同的场景&#xff0c;对软件各项性能指标进行测试和评估的过程。 性能测试的目的&#xff1a;评估当前系统的能力、寻找性能瓶颈以优化性能、评估软件是否能够满…