【知识图谱系列】(实例)python操作neo4j构建企业间的业务往来的知识图谱

本章节通过聚焦于"金额"这一核心属性,构建了一幅知识图谱,旨在揭示"销售方"与"购买方"间的商业互动网。在这张图谱中,绿色节点象征着购买方,而红色节点则代表了销售方。这两类节点间的紧密连线,不仅映射了双方在市场活动中的合作桥梁,还特别以不同颜色编码的线条区分了交易的规模等级:细分为1000万级别、2000万级别、5000万级别乃至8000万级别的交易纽带,以此精准描绘出商业交易的多样性和规模层次。

目录

一、结果

二、数据

三、DataToNeo4jClass1.py

四、invoice_neo4j1.py 

一、结果

二、数据

三、DataToNeo4jClass1.py

# -*- coding: utf-8 -*-
from py2neo import Node, Graph, Relationship,NodeMatcherclass DataToNeo4j(object):"""将excel中数据存入neo4j"""def __init__(self):"""建立连接"""link = Graph("http://localhost:7474", auth=("neo4j", "123456789Xx"))self.graph = link#self.graph = NodeMatcher(link)# 定义label,定义标签self.buy = 'buy'#购买方self.sell = 'sell'#销售方self.graph.delete_all()#删除已有的节点和关系、清空self.matcher = NodeMatcher(link)#定义一个matcher,一会定义关系的时候要用#NodeMatcher是从py2neo中导入的    后续帮助做匹配#下边注释掉的是一些官方的小例子,做测试的时候可以试一试##Node是从py2neo中导入的"""#创建节点node3 = Node('animal' , name = 'cat')node4 = Node('animal' , name = 'dog')  node2 = Node('Person' , name = 'Alice')node1 = Node('Person' , name = 'Bob')  #创建关系、边r1 = Relationship(node2 , 'know' , node1)    r2 = Relationship(node1 , 'know' , node3) r3 = Relationship(node2 , 'has' , node3) r4 = Relationship(node4 , 'has' , node2) #create就是实际的添加到图当中   self.graph.create(node1)self.graph.create(node2)self.graph.create(node3)self.graph.create(node4)self.graph.create(r1)self.graph.create(r2)self.graph.create(r3)self.graph.create(r4)"""def create_node(self, node_buy_key,node_sell_key):"""建立节点"""for name in node_buy_key:buy_node = Node(self.buy, name=name)#第一个参数是标签,第二个参数是名字self.graph.create(buy_node)for name in node_sell_key:sell_node = Node(self.sell, name=name)self.graph.create(sell_node)def create_relation(self, df_data):"""建立联系"""      m = 0for m in range(0, len(df_data)):#遍历数据中的每一条数据try:    print(list(self.matcher.match(self.buy).where("_.name=" + "'" + df_data['buy'][m] + "'")))print(list(self.matcher.match(self.sell).where("_.name=" + "'" + df_data['sell'][m] + "'")))rel = Relationship(self.matcher.match(self.buy).where("_.name=" + "'" + df_data['buy'][m] + "'").first(),df_data['money'][m], self.matcher.match(self.sell).where("_.name=" + "'" + df_data['sell'][m] + "'").first())self.graph.create(rel)except AttributeError as e:print(e, m)

四、invoice_neo4j1.py 

# -*- coding: utf-8 -*-
from dataToNeo4jClass.DataToNeo4jClass1 import DataToNeo4j
import os
import pandas as pd
#pip install py2neo==5.0b1 注意版本,要不对应不了invoice_data = pd.read_excel('./Invoice_data_Demo.xls', header=0, engine='xlrd')
#print(invoice_data)#可以先阅读下文档:https://py2neo.org/v4/index.htmldef data_extraction():"""节点数据抽取"""# 取出购买方名称到listnode_buy_key = []for i in range(0, len(invoice_data)):#遍历数据node_buy_key.append(invoice_data['购买方名称'][i])#里边有重复值node_sell_key = []for i in range(0, len(invoice_data)):node_sell_key.append(invoice_data['销售方名称'][i])#里边有重复值# 用set去除重复的发票名称node_buy_key = list(set(node_buy_key))node_sell_key = list(set(node_sell_key))# value抽出作nodenode_list_value = []for i in range(0, len(invoice_data)):for n in range(1, len(invoice_data.columns)):# 取出表头名称invoice_data.columns[i]node_list_value.append(invoice_data[invoice_data.columns[n]][i])# 去重node_list_value = list(set(node_list_value))# 将list中浮点及整数类型全部转成string类型node_list_value = [str(i) for i in node_list_value]return node_buy_key, node_sell_key,node_list_valuedef relation_extraction():"""联系数据抽取"""links_dict = {}sell_list = []money_list = []buy_list = []for i in range(0, len(invoice_data)):#遍历数据money_list.append(invoice_data[invoice_data.columns[19]][i])#金额列sell_list.append(invoice_data[invoice_data.columns[10]][i])#销售方方名称列buy_list.append(invoice_data[invoice_data.columns[6]][i])#购买方名称列# 将数据中int类型全部转成stringsell_list = [str(i) for i in sell_list]buy_list = [str(i) for i in buy_list]money_list = [str(i) for i in money_list]# 整合数据,将三个list整合成一个dictlinks_dict['buy'] = buy_listlinks_dict['money'] = money_listlinks_dict['sell'] = sell_list# 将数据转成DataFramedf_data = pd.DataFrame(links_dict)#print(df_data)return df_datarelation_extraction()
create_data = DataToNeo4j()create_data.create_node(data_extraction()[0], data_extraction()[1])
create_data.create_relation(relation_extraction())

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/864606.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

苹果手机+AI手机概念股名单一览表

苹果智能将成为AI手机引领者,推动原生智能加速渗透,据Canlys预计2025年iOS操作系统将占据全球AI手机出货的55%。 AI手机端侧算力提升,将带动产业链部件升级创新 端侧算力提升或带动手机芯片及零部件升级,如 1)SoC芯片&…

无人机智能追踪反制系统技术详解

随着无人机技术的飞速发展,无人机在各个领域的应用越来越广泛。然而,无人机的无序飞行和非法使用也带来了一系列安全隐患和威胁。因此,无人机智能追踪反制系统应运而生,成为维护公共安全和防止无人机滥用的重要工具。本文将详细介…

Java Lambda语法介绍

目录 一、概述 二、Lambda语法的历史 2.1 Lambda名字的含义 2.2 Lambda的历史 三、Lambda语法的核心接口 3.1 Lambda的四大核心接口 3.1.1 概述 3.1.2 Consumer 接口 3.1.3 Supplier 接口 3.1.4 Function 接口,> 3.1.5 Predicate 接口 四、Lambda的引用 4.1 概…

云海中的坚固灯塔:等保测评视角下的混合云安全策略与合规性深度剖析

在数字化浪潮的推动下,混合云架构以其独特的优势成为企业转型升级的得力助手。然而,随着数据资产向云端迁移,安全风险与合规挑战亦如影随形,成为企业前行的绊脚石。等保测评作为我国网络安全的一道坚实屏障,对于护航云…

Gartner发布软件供应链安全指南:软件供应链攻击造成的损失将从 2023 年的460亿美元上升到2031年的1380亿美元

软件供应链安全是一个关键的风险和合规性问题,但大多数组织都以分散的方式处理它。缺乏一个包罗万象的框架会遗留安全漏洞。通过实施三支柱框架,安全和风险管理领导者可以确保广泛的保护。 主要发现 对软件供应链的攻击给组织带来重大的安全、监管和运营…

【深度学习】pytorch训练中的一个大坑

使用的命令:iostat -x 5 可以看到 ssd的利用率已经满了。 之前在的数据集放在了 hdd上,训练结果特别慢。 所以我把它移动到了ssd上,然后训练参数用的 resume, 但是!!!!它把历史记住…

【C语言】19.预处理详解

文章目录 1.预定义符号2.#define定义常量3.#define定义宏4.带有副作用的宏参数5.宏替换的规则6.宏函数的对比7.#和##7.1 #运算符7.2 ## 运算符 8.命名约定9.#undef10.命令行定义11.条件编译12.头文件的包含12.1 头⽂件被包含的⽅式12.1.1 本地⽂件包含12.1.2 库⽂件包含 12.2 嵌…

甲骨文首次将LLMs引入数据库,集成Llama 3和Mistral,和数据库高效对话

信息时代,数据为王。数据库作为数据存储&管理的一种方式,正在以势不可挡的趋势与AI结合。 前有OpenAI 收购了数据库初创公司 Rockset,引发广泛关注;Oracle公司(甲骨文)作为全球最大的信息管理软件及服…

计算机硬件(考点篇)试题

波特率: 在电子通信领域,波特(Baud)即调制速率,指的是有效数据讯号调制载波的速率,即单位时间内载波调制状态变化的次数。波特(Baud,单位符号:Bd)。 波特率…

PHP景区旅游多商户版微信小程序系统源码

解锁景区新玩法!​ 引言:一站式旅行新体验 厌倦了传统景区的单调游览?想要一次旅行就能体验多种风情?那么,“景区旅游多商户版”绝对是你的不二之选!这个创新模式将景区内多个商户资源整合,为…

【MySQL备份】Percona XtraBackup增量备份实战篇

目录 1.前言 2.准备工作 2.1.环境信息 2.2.创建备份目录 2.3.配置/etc/my.cnf文件 2.4.授予root用户BACKUP_ADMIN权限 3.增量备份 3.1.第一步:全量备份 3.2.第二步:增量备份 3.3.第三步:再次增量备份 4.准备备份 4.1.准备全量备…

windows自带的性能采集配置方法

1 计算机---右键---管理 2 性能--数据收集器几---用户自定义 3新建--输入程序名称 并在此页面选择--手动创建(高级) 4 下一步--勾选性能计数器---下一步 5 添加--找到process Processor Time User Time Handle Count ID Process Private Bytes…

爬虫逆向实战(42)-某巢登陆(AES、MD5、RSA、滑块验证码)

一、数据接口分析 主页地址:某巢 1、抓包 通过抓包可以发现在登录时,网站首先请求captcha/querySlideImage/来获取滑块验证码的图片,然后请求captcha/checkCode/接口来验证滑块验证码。滑块验证码校验成功后,请求noshiro/getPu…

理解MySQL核心技术:存储过程与函数的强大功能

在大型应用程序和复杂的数据库操作中,存储过程与函数扮演着至关重要的角色。它们不仅可以提高代码的可维护性,还能加强数据库的安全性和性能。本篇文章将深入探讨MySQL存储过程与函数的基础知识、创建、管理及其在实际应用中的优势。 什么是存储过程和函…

无人机热成像分析图谱原理

一、热成像原理 热成像,也称为红外热成像或红外成像,是一种利用红外辐射(通常指的是热辐射)来获取物体表面温度分布信息的成像技术。在无人机上集成热成像传感器,可以远程捕获并分析目标物体的热特征,不受…

【高性能服务器】多线程并发模型

🔥博客主页: 我要成为C领域大神🎥系列专栏:【C核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​​ 对于常见的C/…

ROS2使用Python开发动作通信

1.创建接口节点 cd chapt4_ws/ ros2 pkg create robot_control_interfaces --build-type ament_cmake --destination-directory src --maintainer-name "joe" --maintainer-email "1027038527qq.com" mkdir -p src/robot_control_interfaces/action touch…

跨模型知识融合:大模型的知识融合

大模型(LLMs)在多个领域的应用日益广泛,但确保它们的行为与人类价值观和意图一致却充满挑战。传统对齐方法,例如基于人类反馈的强化学习(RLHF),虽取得一定进展,仍面临诸多难题&#…

LeetCode Top 100 题目概览及部分题目解答【两数之和,接雨水,最长回文子串,三数之和】

本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》 公众号:JAVA开发王大师,专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 山峯 转载说明:务必注明来源(注明:作者:王文峰…

django开源电子文档管理系统_Django简介、ORM、核心模块

Django简介 Django是一种开源的大而且全的Web应用框架,是由python语言来编写的。他采用了MVC模式,Django最初是被开发来用于管理劳伦斯出版集团下的一些以新闻为主内容的网站。一款CMS(内容管理系统)软件。并于 2005 年 7 月在 BSD 许可证下发布。这套框…