13_旷视轻量化网络--ShuffleNet V2

回顾一下ShuffleNetV1:08_旷视轻量化网络--ShuffleNet V1-CSDN博客

1.1 简介

ShuffleNet V2是在2018年由旷视科技的研究团队提出的一种深度学习模型,主要用于图像分类和目标检测等计算机视觉任务。它是ShuffleNet V1的后续版本,重点在于提供更高效的模型设计,同时保持或提升模型的准确性。

核心设计理念:

  • 高效性与准确性并重:ShuffleNet V2的设计初衷是解决深度学习模型在移动端和嵌入式设备上部署时面临的效率与准确性之间的权衡问题。它旨在以最少的计算资源和内存占用,达到尽可能高的分类或检测准确率。

  • 通道重排(Channel Shuffle):这一特性从ShuffleNet V1继承而来,通过随机打乱不同组内的通道,促进特征的混合,增加模型的表达能力。这有助于模型学习到更加丰富的特征组合,从而提升性能。

主要创新点:

  1. 分层结构优化:不同于V1,V2版本通过引入更复杂的块(blocks)设计来优化网络结构。每个块可能包含多个路径,每个路径具有不同的功能,如特征提取、特征重组等,这样的设计能更高效地利用计算资源。

  2. 均衡通道宽度:研究发现,保持每层网络的通道数相对均衡可以减少内存访问的开销,并且对模型性能影响不大。因此,ShuffleNet V2采用了所有层通道数相等的设计原则,这有助于模型在移动设备上更快运行。

  3. 组卷积的改进应用:虽然组卷积能有效减少计算量,但过度分组会导致模型性能下降。V2通过精细调整组的数量和结构,找到了计算效率和模型性能之间的最佳平衡点。

  4. 直接面向实际运行速度的优化:在设计过程中,除了理论上的计算量(FLOPs)外,研究者还直接考虑了模型在实际硬件上的运行速度。这意味着在设计决策中融入了对实际部署环境的考量,包括CPU和GPU的特定性能特征。

  5. 计算和内存访问成本的细致优化:通过对模型内部的元素级操作(如ReLU、Addition)进行深入分析和优化,减少了不必要的计算负担和内存访问,进一步提升了模型的运行效率。

ShuffleNet V2由于其出色的效率和性能,在移动设备、智能安防、自动驾驶以及各种IoT设备上的视觉应用中得到了广泛应用。它的设计原则和优化思路也为后来的轻量化网络设计提供了宝贵的经验和指导,推动了深度学习模型在实际应用中的普及和发展。

shuffleNet出自论文《ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design》,下面我们来学习一下这篇论文。
 

1.2 四条轻量化网络设计原则

准则一和准则二:

对于V2,用了大量的分组1x1卷积。

准则三:(碎片化指分支多,网络较宽)

准则四:(尽量回避主元素操作)

1.3 V2的模型结构

ShuffleNet V2相比V1有几项关键改进和特点,这些改进主要是为了进一步提升模型的效率和准确性,特别是在移动端和嵌入式设备上的表现。以下是ShuffleNet V2相较于V1的一些主要特点:

  1. 更高效的结构设计
    • V2放弃了V1中的基于瓶颈模块的设计,转而采用一种新的结构,称为“ShuffleNet块”。这种设计通过重新安排层的顺序和结构,减少了计算成本,同时保持了模型的表达能力。
  2. 均衡的通道宽度
    • V2提出了一种“均衡通道宽度”的设计理念,即网络中所有层的通道数保持一致或接近。这与V1中通道数随深度增加而增加的做法不同。实验表明,这种设计能降低内存访问成本(MAC),提升运行效率,且对准确性影响较小。
  3. 优化的组卷积策略
    • 在V2中,对组卷积(group convolution)的使用进行了优化,避免了过量分组可能带来的性能下降。通过合理设置组数,V2在减少计算量的同时,确保了模型的表达能力不受太大影响。
  4. 直接优化实际运行速度
    • 设计时不仅考虑理论上的计算复杂度(FLOPs),更侧重于模型在实际设备上的运行速度。这意味着V2在设计时充分考虑了硬件特性,如内存带宽和计算单元的利用率。
  5. 减少元素级操作
    • 为了避免element-wise操作(如加法)造成的额外计算负担,V2中使用concatenation(连接操作)代替了部分element-wise操作,减少了计算成本,提升了运行效率。
  6. 通道重排的改进位置
    • 相对于V1中channel shuffle的位置,V2将其放置在block的不同位置,以更好地适应新的结构设计,进一步促进了特征的混合和信息的流通。
  7. 新增操作
    • 在全局平均池化(Global Average Pooling, GAP)之前添加了一个额外的卷积层(conv5),这是V2相比于V1的一个显著区别,旨在进一步提炼特征,提升模型的分类性能。

右侧是V2的结构。我们先看基本模块。V2在基本模块采用了一个“channel Split”操作,就是把一半的通道数走左边的路,另一半通道数走右边的路,且注意:V2的1x1卷积并不是像V1那样是分组1x1卷积。然后采用concat(摞在一起连接)操作而不是逐元素相加(ADD)的操作

可以看到V2是满足轻量化网络的四条设计原则的。

V2的模型结构如下图:

和DenseNet的特征复用相比较,类似的地方:

ShuffleNetV2通过模型的结构实现了不同层之前模型的共享和复用。这种效果和DenseNet相比是很类似的。

1.4 V2的性能

 图为ShuffleNetV2与部分其他轻量化的网络比较:

2.pytorch模型复现

马上更新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/863788.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

antd Select前端加模糊搜索

背景&#xff1a;前端的小伙伴经常在开发antd Select的时候后端不提供搜索模糊搜索接口&#xff0c;而是全量返回数据&#xff0c;这个时候就需要我们前端自己来写一个模糊搜索了。 效果 代码截图 代码 <SelectshowSearchmode"multiple"options{studioList}filte…

运维锅总详解Prometheus

本文尝试从Prometheus简介、架构、各重要组件详解、relable_configs最佳实践、性能能优化及常见高可用解决方案等方面对Prometheus进行详细阐述。希望对您有所帮助&#xff01; 一、Prometheus简介 Prometheus 是一个开源的系统监控和报警工具&#xff0c;最初由 SoundCloud …

基于模糊神经网络的时间序列预测(以hopkinsirandeath数据集为例,MATLAB)

模糊神经网络从提出发展到今天,主要有三种形式&#xff1a;算术神经网络、逻辑模糊神经网络和混合模糊神经网络。算术神经网络是最基本的&#xff0c;它主要是对输入量进行模糊化&#xff0c;且网络结构中的权重也是模糊权重&#xff1b;逻辑模糊神经网络的主要特点是模糊权值可…

Python技术笔记汇总(含语法、工具库、数科、爬虫等)

对Python学习方法及入门、语法、数据处理、数据可视化、空间地理信息、爬虫、自动化办公和数据科学的相关内容可以归纳如下&#xff1a; 一、Python学习方法 分解自己的学习目标&#xff1a;可以将学习目标分基础知识&#xff0c;进阶知识&#xff0c;高级应用&#xff0c;实…

2024 vue3入门教程:windows系统下部署node环境

一、打开下载的node官网 Node.js — 下载 Node.js 二、根据个人喜好的下载方法&#xff0c;下载到自己的电脑盘符下 三、我用的是方法3下载的压缩包&#xff0c;解压到E盘nodejs目录下&#xff08;看个人&#xff09; 四、配置电脑的环境变量&#xff0c;新建环境变量的时候…

【ESP32】打造全网最强esp-idf基础教程——14.VFS与SPIFFS文件系统

VFS与SPIFFS文件系统 这几天忙着搬砖&#xff0c;差点没时间更新博客了&#xff0c;所谓一日未脱贫&#xff0c;打工不能停&#xff0c;搬砖不狠&#xff0c;明天地位不稳呀。 不多说了&#xff0c;且看以下内容吧~ 一、VFS虚拟文件系统 先来看下文件系统的定义&#x…

vue中【事件修饰符号】详解

在Vue中&#xff0c;事件修饰符是一种特殊的后缀&#xff0c;用于修改事件触发时的默认行为。以下是Vue中常见的事件修饰符的详细解释&#xff1a; .stop 调用event.stopPropagation()&#xff0c;阻止事件冒泡。当你在嵌套元素中都有相同的事件监听器&#xff08;如click事件…

AI模型的奥运会:谁将在OlympicArena中夺冠?

获取本文论文原文PDF&#xff0c;请在公众号【AI论文解读】留言&#xff1a;论文解读 引言&#xff1a;AI模型的奥林匹克级评测 评估和比较不同AI模型的性能始终是一个核心话题。随着技术的不断进步&#xff0c;这些模型在处理复杂任务的能力上有了显著的提升。为了更精确地衡…

Vue3学习笔记<->创建第一个vue项目(2)

新建一个项目目录 找一个盘新建一个目录&#xff0c;我这里在D盘创建一个vuedemo目录作为项目存放的目录。使用idea打开目录。   单击ieda底部的按钮“Terminal”&#xff0c;打开命令行窗口&#xff0c;如果命令行窗口当前目录不是“vuedemo”&#xff0c;就切换到“vuedem…

qt文件如何打包成一个独立的exe文件

QT官方给我们安装好了打包软件&#xff0c;就在你QT安装的位置 把这个在cmd打开C:\Qt\6.7.1\mingw_64\bin\windeployqt6.exe&#xff08;或复制地址&#xff09; 然后把要打包项目的exe复制到新的空文件夹&#xff0c;再复制他的地址 按回车后生成新文件 再下载打包软件&#…

东方航空逆向

声明(lianxi a15018601872) 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; …

【AIGC】AnimateAnyone:AI赋予静态照片生命力的魔法

摘要&#xff1a; 在人工智能技术的不断进步中&#xff0c;AnimateAnyone项目以其创新性和易用性脱颖而出&#xff0c;成为GitHub上备受瞩目的AI项目之一。由阿里巴巴智能计算研究院开发的这一技术&#xff0c;允许用户通过提供一张静态照片&#xff0c;快速生成动态角色。本文…

Linux实用命令练习

目录 一、常用命令 二、系统命令 三、用户和组 四、权限 五、文件相关命令 六、查找 七、正则表达式 八、输入输出重定向 九、进程控制 十、其他命令 1、远程文件复制&#xff1a;scp 2、locate查找 3、which命令 4、设置或显示环境变量&#xff1a;export 5、修…

YOLO-V1

一、YOLO-V1整体思想与网络架构 1.1 YOLO算法整体思路解读 YOLO-V1: 经典的one-stage方法 把检测问题转化成回归问题&#xff0c;一个CNN就搞定了&#xff01; 可以对视频进行实时检测&#xff0c;应用领域非常广&#xff01; 核心思想&#xff1a; 1、预测一张图像中有哪些物…

11_电子设计教程基础篇(磁性元件)

文章目录 前言一、电感1、原理2、种类1、制作工艺2、用途 3、参数1、测试条件2、电感量L3、品质因素Q4、直流电阻&#xff08;DCR&#xff09;5、额定电流6、谐振频率SRF&#xff08;Self Resonant Frequency&#xff09;7、磁芯损耗 4、应用与选型 二、共模电感1、原理2、参数…

《昇思25天学习打卡营第15天 | 昇思MindSpore基于MindSpore的红酒分类实验》

15天 本节学了通过MindSpore的完成红酒分类。 1.K近邻算法&#xff08;K-Nearest-Neighbor, KNN&#xff09;是一种用于分类和回归的非参数统计方法&#xff0c;是机器学习最基础的算法之一。 1.1分类问题 1.2回归问题 1.3距离的定义 2.数据处理 2.1 数据准备 2.2 数据读取与处…

动画重定向——当给一个人物模型用别人物的动画时,会遇到人物与动画不匹配问题,怎么解决呢?

每日一句&#xff1a;实践出真知&#xff0c;试错方确信 目录 最开始我想的原因&#xff01; 分析一下动画相关参数 Animator组件参数详解&#xff1a; 人物模型的导入设置参数&#xff1a; Skinned Mesh Renderer组件详解: Skinned Mesh Renderer工作原理 设置Skinned …

AI大模型的崛起:第四次工业革命的前奏?

在当今这个信息爆炸的时代&#xff0c;人工智能&#xff08;AI&#xff09;大模型的崛起引起了广泛的关注和讨论。有人将其视为第四次工业革命的前奏&#xff0c;然而&#xff0c;这真的可能吗&#xff1f;本文将探讨这一问题&#xff0c;并对中国AI大模型的发展进行简要分析。…

MyBatis第一节

目录 1. 简介2. 配置3. doing3.1 创建一个表3.2 打开IDEA&#xff0c;创建一个maven项目3.3 导入依赖的jar包3.4 创建entity3.5 编写mapper映射文件(编写SQL)3.6 编写主配置文件3.7 编写接口3.8 测试 参考链接 1. 简介 它是一款半自动的ORM持久层框架&#xff0c;具有较高的SQ…