基于模糊神经网络的时间序列预测(以hopkinsirandeath数据集为例,MATLAB)

模糊神经网络从提出发展到今天,主要有三种形式:算术神经网络、逻辑模糊神经网络和混合模糊神经网络。算术神经网络是最基本的,它主要是对输入量进行模糊化,且网络结构中的权重也是模糊权重;逻辑模糊神经网络的主要特点是模糊权值可以进行逻辑运算操作;混合模糊神经网络是对于基本的模糊神经网络而言,其内的传统函数和模糊权值的运算都是随意的不同的。模糊神经网络发展到今天,已经从理论研究应用到工业生产和人们生活中的各个领域。模糊神经网络已经在模式识别、图像处理、工业控制生产等各个领域取得了不少成果。

鉴于此,采用Takagi Sugeno Kang模糊神经网络对时间序列进行预测,以hopkinsirandeat数据为例进行说明,程序运行环境为MATLAB R2021B。主运行代码如下:

close all;clc;clear all
dat=load('hopkinsirandeath.txt')';
dat1=load('hopkinsiranconfirmed.txt')';
dat2=load('hopkinsiranrecovered.txt')';% Nonlinear ARX model to fit
sys = nlarx(dat,64);
sys1 = nlarx(dat1,64);
sys2 = nlarx(dat2,64);% Compare the simulated output of sys with measured data to ensure it is a good fit.
nstep = 40;
figure;
set(gcf, 'Position',  [50, 200, 1300, 400])
subplot(1,3,1)
compare(dat,sys,nstep);title('Covid Iran Death');
grid on;
subplot(1,3,2)
compare(dat1,sys1,nstep);title('Covid Iran Confirm');
grid on;
subplot(1,3,3)
compare(dat2,sys2,2);title('Covid Iran Recovered');
grid on;
% Forecast the values into the future for a given time horizon K.
% K is number of days 
K = 180;
opt = forecastOptions('InitialCondition','e');
[p,ForecastMSE] = forecast(sys,dat,K,opt);
[p1,ForecastMSE1] = forecast(sys1,dat1,K,opt);
[p2,ForecastMSE2] = forecast(sys2,dat2,K,opt);datsize=size(dat);datsize=datsize(1,1);
ylbl=datsize+K;
t = linspace(datsize,ylbl,length(p));
figure;
set(gcf, 'Position',  [1, 1, 1000, 950])
subplot(3,1,1)
plot(dat,'--',...'LineWidth',1,...'MarkerSize',5,...'Color',[0,0,0]);
hold on;
plot(t,p,'-.',...'LineWidth',2,...'MarkerSize',10,...'MarkerEdgeColor','r',...'Color',[0.9,0,0]);
title('Johns Hopkins Data for Iran COVID Deaths - Red is Forcasted')
xlabel('Days - From Jan 2020 Till Dec 2021','FontSize',12,...'FontWeight','bold','Color','b');
ylabel('Number of People','FontSize',12,...'FontWeight','bold','Color','b');datetick('x','mmm');
legend({'Measured','Forecasted'});subplot(3,1,2)
plot(dat1,'--',...'LineWidth',1,...'MarkerSize',5,...'Color',[0,0,0]);
hold on;
plot(t,p1,'-.',...'LineWidth',2,...'MarkerSize',10,...'MarkerEdgeColor','r',...'Color',[0.9,0,0]);
title('Johns Hopkins Data for Iran COVID Confirmed - Red is Forcasted')
xlabel('Days - From Jan 2020 Till Dec 2021','FontSize',12,...'FontWeight','bold','Color','b');
ylabel('Number of People','FontSize',12,...'FontWeight','bold','Color','b');datetick('x','mmm');
legend({'Measured','Forecasted'});
subplot(3,1,3)
plot(dat2,'--',...'LineWidth',1,...'MarkerSize',5,...'Color',[0,0,0]);
hold on;
plot(t,p2,'-.',...'LineWidth',2,...'MarkerSize',10,...'MarkerEdgeColor','r',...'Color',[0.9,0,0]);
title('Johns Hopkins Data for Iran COVID Recovered - Red is Forcasted')
xlabel('Days - From Jan 2020 Till Dec 2021','FontSize',12,...'FontWeight','bold','Color','b');
ylabel('Number of People','FontSize',12,...'FontWeight','bold','Color','b');datetick('x','mmm');
legend({'Measured','Forecasted'});
%
finalpredict=[dat;p];
finalpredict1=[dat1;p1];
finalpredict2=[dat2;p2];%% Predicting original and forcasted data using ANFIS (FCM)
[TrainTargets,TrainOutputs]=fuzzfcm(finalpredict);
figure;
set(gcf, 'Position',  [10, 50, 1100, 300])
Plotit(TrainTargets,TrainOutputs,'ANFIS Predict COVID Deaths');
%
[TrainTargets,TrainOutputs]=fuzzfcm(finalpredict1);
figure;
set(gcf, 'Position',  [50, 100, 1100, 300])
Plotit(TrainTargets,TrainOutputs,'ANFIS Predict COVID Confirmed');
%
[TrainTargets,TrainOutputs]=fuzzfcm(finalpredict2);
figure;
set(gcf, 'Position',  [70, 130, 1100, 300])
Plotit(TrainTargets,TrainOutputs,'ANFIS Predict COVID Recovered');完整代码:https://mbd.pub/o/bread/mbd-ZJWWm5hv

图片

图片

图片

图片

图片

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/863784.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python技术笔记汇总(含语法、工具库、数科、爬虫等)

对Python学习方法及入门、语法、数据处理、数据可视化、空间地理信息、爬虫、自动化办公和数据科学的相关内容可以归纳如下: 一、Python学习方法 分解自己的学习目标:可以将学习目标分基础知识,进阶知识,高级应用,实…

Java中Integer类的应用

Java中Integer类的应用 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨Java中Integer类的应用。Integer类是Java中的一个包装类,…

【面试系列】全栈开发工程师 高频面试题及详细解答

欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏: ⭐️ 全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题. ⭐️ AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、…

2024 vue3入门教程:windows系统下部署node环境

一、打开下载的node官网 Node.js — 下载 Node.js 二、根据个人喜好的下载方法,下载到自己的电脑盘符下 三、我用的是方法3下载的压缩包,解压到E盘nodejs目录下(看个人) 四、配置电脑的环境变量,新建环境变量的时候…

设置响应内容类型的几种方法比较

设置响应内容类型的几种方法比较 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在Web开发中,设置响应内容类型是非常常见的需求。响应内容类型告…

【ESP32】打造全网最强esp-idf基础教程——14.VFS与SPIFFS文件系统

VFS与SPIFFS文件系统 这几天忙着搬砖,差点没时间更新博客了,所谓一日未脱贫,打工不能停,搬砖不狠,明天地位不稳呀。 不多说了,且看以下内容吧~ 一、VFS虚拟文件系统 先来看下文件系统的定义&#x…

Python基础之模块和包

文章目录 1 模块和包1.1 模块和包1.1.1 模块1.1.2 包1.1.3 简单使用 1.2 import 语句1.2.1 import1.2.2 from … import 语句1.2.3 from … import * 语句 1.4 深入模块1.4.1 模块符号表1.4.2 __name__属性1.4.3 dir() 函数1.4.4 作用域 1.5 常用内置模块 1 模块和包 1.1 模块…

vue中【事件修饰符号】详解

在Vue中,事件修饰符是一种特殊的后缀,用于修改事件触发时的默认行为。以下是Vue中常见的事件修饰符的详细解释: .stop 调用event.stopPropagation(),阻止事件冒泡。当你在嵌套元素中都有相同的事件监听器(如click事件…

FuzzyPID

#include <stdio.h> typedef struct FuzzyPID { int num_area ; //划分区域个数 //float e_max; //误差做大值 //float e_min; //误差最小值 //float ec_max; //误差变化最大值 //float ec_min; //误差变化最小值 //float kp_max, kp_min; float e_membership_valu…

AI模型的奥运会:谁将在OlympicArena中夺冠?

获取本文论文原文PDF&#xff0c;请在公众号【AI论文解读】留言&#xff1a;论文解读 引言&#xff1a;AI模型的奥林匹克级评测 评估和比较不同AI模型的性能始终是一个核心话题。随着技术的不断进步&#xff0c;这些模型在处理复杂任务的能力上有了显著的提升。为了更精确地衡…

Vue3学习笔记<->创建第一个vue项目(2)

新建一个项目目录 找一个盘新建一个目录&#xff0c;我这里在D盘创建一个vuedemo目录作为项目存放的目录。使用idea打开目录。   单击ieda底部的按钮“Terminal”&#xff0c;打开命令行窗口&#xff0c;如果命令行窗口当前目录不是“vuedemo”&#xff0c;就切换到“vuedem…

基于FastApi框架的后端服务实践案例

去年在做大模型部署和服务开发研究过程中,接触到如何将大模型的对话封装成服务,供任何消费端调用,详见之前的大模型应用文章,之后,为了实现NLP分词和实体识别,也基于tornado框架编写了后端服务,详见那篇文章,最近在利用python在做后端数据处理过程中,发现从响应性能、…

python基础:操作字典

1、遍历整个字典的键-值对 items()方法返回一个键-值对列表&#xff0c;for 循环依次将每个键—值对存储到指定的两个变量中。 使用元组和列表遍历方法遍历字典&#xff1a; user_0 { username: efermi, first: enrico, last: fermi, } for key, value in user_0.items():p…

qt文件如何打包成一个独立的exe文件

QT官方给我们安装好了打包软件&#xff0c;就在你QT安装的位置 把这个在cmd打开C:\Qt\6.7.1\mingw_64\bin\windeployqt6.exe&#xff08;或复制地址&#xff09; 然后把要打包项目的exe复制到新的空文件夹&#xff0c;再复制他的地址 按回车后生成新文件 再下载打包软件&#…

spring04事务

jdbcTemplate使用 <dependencies><dependency><groupId>org.springframework</groupId><artifactId>spring-jdbc</artifactId><version>6.0.4</version></dependency><dependency><groupId>mysql</group…

东方航空逆向

声明(lianxi a15018601872) 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; …

【AIGC】AnimateAnyone:AI赋予静态照片生命力的魔法

摘要&#xff1a; 在人工智能技术的不断进步中&#xff0c;AnimateAnyone项目以其创新性和易用性脱颖而出&#xff0c;成为GitHub上备受瞩目的AI项目之一。由阿里巴巴智能计算研究院开发的这一技术&#xff0c;允许用户通过提供一张静态照片&#xff0c;快速生成动态角色。本文…

Shiro 简单入门

Apache Shiro 是一个强大且灵活的 Java 安全框架&#xff0c;用于处理身份验证、授权、加密和会话管理等任务。Shiro 的设计目标是提供一种简单而直观的方式来处理安全问题&#xff0c;使开发人员能够轻松集成和管理应用程序的安全性。以下是对 Shiro 的详细讲解&#xff1a; …

Linux实用命令练习

目录 一、常用命令 二、系统命令 三、用户和组 四、权限 五、文件相关命令 六、查找 七、正则表达式 八、输入输出重定向 九、进程控制 十、其他命令 1、远程文件复制&#xff1a;scp 2、locate查找 3、which命令 4、设置或显示环境变量&#xff1a;export 5、修…