【视觉SLAM入门】8. 回环检测,词袋模型,字典,感知,召回,机器学习

"见人细过 掩匿盖覆”

  • 1. 意义
  • 2. 做法
    • 2.1 词袋模型和字典
      • 2.1.2 感知偏差和感知变异
      • 2.1.2 词袋
      • 2.1.3 字典
    • 2.2 匹配(相似度)计算
  • 3. 提升

前言: 前端提取数据,后端优化数据,但误差会累计,需要回环检测构建全局一致的地图;

1. 意义

  • 通俗的讲,机器人两次经过同一个场景,为了检测是同一个场景,这就是回环检测。它可以用来构建全局一致的地图。有了时隔更加久远的约束,一定程度消除累计飘移。形象的想弹簧,就是把原来已经优化好的,拉的更贴近真实位置。
  • 回环检测还可以做重定位,在跟踪丢失的时候。

2. 做法

以下是几种做法:

  • 取当前图像和历史所有图像一一进行特征提取并比对,通过匹配的数量确定。O( n 2 n^2 n2),缺点资源;
  • 还是上边的方法,但不一一匹配,随机抽取,可检测到的帧少很多;
  • 里程计配合给一个大致位置,这里的进行回环检测,缺点里程计自带误差,只能小范围;
  • 基于外观,主流,其中一种就是词袋模型。

2.1 词袋模型和字典

2.1.2 感知偏差和感知变异

感知偏差(假阳性),感知变异(假阴性)

在这里插入图片描述

  • 准确率(检测正确的数量 / 检测的总数量): P r e c i s i o n = T P / ( T P + F P ) Precision = TP/(TP+FP) Precision=TP/(TP+FP)

  • 召回率(实际检测出来的数量 / 理应检测出来的数量): R e c a l l = T P / ( T P + F N ) Recall = TP/(TP+FN) Recall=TP/(TP+FN)

一般这两个数据呈矛盾,不取极端,只说在recall为多少,pre为多少时候效果最好,一般我们对P的要求更高。这是回环检测的严格性导致的。

2.1.2 词袋

  • 字典实际就是对所有图片中的特征进行提取,比如"人","车"等,它们是单词,对全部图像特征提取所有单词(特征)后构成一个字典。
  • 词袋说的是一帧图像中,能够提取出来的单词。

比如现在有一本4个特征的字典: D = [ x 1 , x 2 , x 3 , x 4 ] D = [x_1,x_2,x_3,x_4] D=[x1,x2,x3,x4]
而我们有两个 x 1 x_1 x1 一个 x 3 x_3 x3 特征的图像,那用词袋可以记为:
A = 2 ⋅ x 1 + 0 ⋅ x 2 + 1 ⋅ x 3 + 0 ⋅ x 4 A = 2\cdot x_1 + 0\cdot x_2 + 1\cdot x_3 + 0\cdot x_4 A=2x1+0x2+1x3+0x4
它的向量就是
A = [ 2 , 1 , 0 , 0 ] A = [2,1,0,0] A=[2,1,0,0]

那么检测两个图像,则举例可以用

s ( a , b ) = 1 − 1 W ∣ ∣ a − b ∣ ∣ 1 s(a,b) = 1 - \frac{1}{W}||a-b||_1 s(a,b)=1W1∣∣ab1

L1范数,各元素绝对值之和,向量完全一样则得到1,是回环。

2.1.3 字典

字典里的单词是某一类特征的组合,类似于一个聚类问题,UML(无监督学习常见问题)。

  • 假设要做 k k k 个单词的字典,可以用K-means,K-means++等实现,这里以K-means(均值)为例:
    在这里插入图片描述

字典规模大,要在字典中查找单词属于哪个,逐个查找复杂度 O ( n ) O(n) O(n),参考数据结构,这里有很多优化方法,这里以最简单的K叉树为例去优化字典结构:
在这里插入图片描述
又很像K-D树,聚类类中类,聚中聚哈哈。一棵深度为 d d d , 分支为 k k k 的树,可以容纳, k d k^d kd 单词。

2.2 匹配(相似度)计算

两个概念:

  • TF(Term Frequency)译频率: 某单词在一副图像中经常出现,它的区分度就高;
  • IDF(Inverse Document Frequency)逆文档频率: 某单词在字典中出现的频率低,它的区分度就高;
  1. 在做字典时候,用IDF,假设所有特征总数为 n n n, 当前要统计的单词特征 w i w_i wi 的数量为 n i n_i ni, 则此单词的IDF为:
    I D F i = l o g n n i IDF_i = log \frac{n}{n_i} IDFi=lognin

  2. 对一副图像而言,假设特征/单词 w i w_i wi 出现了 n i n_i ni 次,而这幅图一共出现的单词数量为 n n n,则TF为:
    T F i = n i n TF_i = \frac{n_i}{n} TFi=nni

  3. 基于以上知识,一个图像的特征点可以对应到很多单词,则它的词袋(BOW)为:
    A = ( w 1 , η 1 ) , ( w 2 , η 2 ) , . . . , ( w N , η N ) ⟺ v A A = {(w_1, \eta _1), (w_2, \eta _2), ... , (w_N, \eta _N)} \iff v_A A=(w1,η1),(w2,η2),...,(wN,ηN)vA
    词袋中有很多0值,因为它不能包含字典中所有词。

  4. 计算两图词袋的差异(匹配度),给出一种方式(一范数),还有很多:
    s ( v A − v B ) = 2 ∑ i = 1 N ∣ v A i ∣ + ∣ v B i ∣ − ∣ v A i − v B i ∣ s(v_A - v_B) = 2\sum^N_{i=1}|v_{Ai}| +|v_{Bi}|-|v_{Ai}-v_{Bi}| s(vAvB)=2i=1NvAi+vBivAivBi

3. 提升

对于回环检测,有几点可以提升的部分:

  1. 增加字典规模
  2. 相似性评分处理

对于环境外观相似,比如教室同款椅子很多,利用先验的相似度(某时刻关键帧图像与上一时刻关键帧的相似性)进行归一化:
s ( v t , v t j ) ′ = s ( v t , v t j ) / s ( v t , v t − Δ t ) s(v_t,v_{tj})' = s(v_t,v_{tj})/s(v_t,v_{t-\Delta t}) s(vt,vtj)=s(vt,vtj)/s(vt,vtΔt)

  1. 关键帧处理
  1. 相邻帧肯定满足回环检测条件,因为变化太小,所以回环检测的帧一般稀疏;
  2. 检测到的回环相邻帧意义不大,一帧就可以优化轨迹,因此会把相近的回环聚类成一类,使算法不会反复检测同一类。
  1. 验证

词袋没有顺序,相机颠倒也是回环,如何验证?
回环缓存机制是一种,单词检测到的回环不足以构成约束,在一段时间内一直检测到的回环才是正确的回环(时间上的一致性检测)

  1. 机器学习应用于类别

图像连续变化产生不同类别,甚至可以认为是连续的;
图像间相似性可以利用深度学习方法;
词袋方法的物体识别能力不如神经网络,回环检测类似。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/85923.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go 语言学习总结(9)—— Go 与 Java 全面对比总结

基本语法格式 Golang: 编码风格相对统一,简单,没有太多的语法糖等,Java层次清晰,全面面向对象。 变量相关 变量的声明及使用 在Java或者PHP、Python中,声明了变量,可以不使用,也不报错。 p…

函数形状的定义方式

在TypeScript中,函数形状有三种定义方式:函数声明、函数表达式和箭头函数。 1.函数声明: function add(x: number, y: number): number {return x y; }2.函数表达式: const subtract function(x: number, y: number): number {r…

JavaWeb开发-06-SpringBootWeb-MySQL

一.MySQL概述 1.安装、配置 官网下载地址:https://dev.mysql.com/downloads/mysql/ 2.数据模型 3.SQL简介 二.数据库设计-DDL 1.数据库 官网:http:// https://www.jetbrains.com/zh-cn/datagrip/ 2.表(创建、查询、修改、删除) #…

【完全二叉树魔法:顺序结构实现堆的奇象】

本章重点 二叉树的顺序结构堆的概念及结构堆的实现堆的调整算法堆的创建堆排序TOP-K问题 1.二叉树的顺序结构 普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构…

浏览器输入url后回车展开过程

当你在浏览器中输入一个URL并敲下回车后,浏览器会执行一系列步骤来访问并展示网页。下面是浏览器访问网页的一般流程: DNS解析:浏览器首先会提取URL中的主机名,然后向DNS服务器发送请求,将主机名解析为对应的IP地址。这…

HTML常用基本元素总结

<!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title> biao qian</title> </head> <body><h1>这是标题1</h1> <h2>这是标题2</h2> <h3>这是标题3</h3><p> 这…

机器学习笔记 - 维度诅咒的数学表达

1、点之间的距离 kNN分类器假设相似的点也可能有相同的标签。但是,在高维空间中,从概率分布中得出的点往往不会始终靠近在一起。 我们可以用一个简单的例子来说明这一点。 我们将在单位立方体内均匀地随机绘制点(如图所示),并研究该立方体内测试点的 k 个最近邻将占用多少…

APM32F0XX/STM32F0XX停机模式功耗测试

打开Geehy-APM32F030x4x6x8手册看功耗描述。 下面进行代码配置&#xff0c;8M主频&#xff0c;进入停机模式。 STOP mode void Enter_Low_Power_Mode(void) {__HAL_RCC_PWR_CLK_ENABLE(); HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI); SystemClock…

【51单片机实验笔记】LED篇(二)多色LED的基本控制

目录 前言硬件介绍双色LED三色LED七彩自动闪烁LED 接线图面包板介绍直插电阻介绍色环解析 双色LED实际接线图三色LED实际接线图七彩自动闪烁LED实际接线图 软件实现双色LED交替闪烁三色LED灯交替闪烁 总结 前言 本节内容我们学习了解一些多色LED的显示原理及驱动方式。 本节涉…

python+requests接口自动化测试框架实例详解教程

1、首先&#xff0c;我们先来理一下思路。 正常的接口测试流程是什么&#xff1f; 脑海里的反应是不是这样的&#xff1a; 确定测试接口的工具 —> 配置需要的接口参数 —> 进行测试 —> 检查测试结果&#xff08;有的需要数据库辅助&#xff09; —> 生成测试报…

【Java 基础篇】Java Consumer 接口详解

在Java编程中&#xff0c;有时需要对某个对象进行操作或者处理&#xff0c;而这个操作可能是非常灵活的。Java 8引入了函数式编程的特性&#xff0c;其中的一个重要接口就是Consumer接口。本文将详细介绍Consumer接口&#xff0c;包括它的定义、用法以及示例。 什么是 Consume…

Java基础(六)

前言&#xff1a;本篇博客学习Junit单元测试框架的使用以及常见的注解。 目录 单元测试 Junit单元测试框架 常见注解 单元测试 什么是单元测试&#xff1f; 针对最小的功能单元&#xff08;方法&#xff09;&#xff0c;编写测试代码对其进行正确性测试。 Junit单元测试框…

MySQL-三大日志

前言 ​ redo log&#xff1a;为了持久化数据&#xff0c;当内存中的数据还没写入到磁盘而宕机时&#xff0c;会读取该日志持久化数据到磁盘 ​ undo log&#xff1a;为了保证原子性&#xff0c;事务的操作都会记录一条相反的sql到该日志&#xff0c;出现错误就会根据该文件恢…

365天搞定八股文——Day 005 MQ中的重要概念

优先级队列&#xff1a;优先级高的消息有优先被消费的特权&#xff0c;该模式只有在生产效率高于消费效率的时候才有效果延迟队列&#xff1a;生产者生产完消息后&#xff0c;不能马上进行消费死信队列&#xff1a;某些消息无法被正常地消费&#xff0c;所以就没有办法被确认&a…

栈和队列1——栈的实现及其oj(括号匹配问题)

一&#xff0c;栈的概念 栈是一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出LIFO&#xff08;Last In First Out&#xff09;的原则。 压栈&#xf…

【lesson7】git的介绍及使用

文章目录 什么是gitgit的历史git使用在gitee上创建仓库git clone HTTPS地址git add .git add 文件名git commit “日志”git pushgit loggit rm 文件名git statusgit pull 什么是git git是版本控制器&#xff0c;那么什么是版本控制器呢&#xff1f; 下面讲个故事为大家讲解一…

【SpringBoot】90、SpringBoot中@Value(“${...}“)的使用细节

@Value 注解可以用来将外部的值动态注入到 Bean 中,在 @Value 注解中,可以使${} 与 #{} ,它们的区别如下: @Value(“${}”):可以获取对应属性文件中定义的属性值。@Value(“#{}”):表示 SpEl 表达式通常用来获取 bean 的属性,或者调用 bean 的某个方法。根据注入的内容来…

SpringBoot开发实战(微课视频版)

ISBN: 978-7-302-52819-7 编著&#xff1a;吴胜 页数&#xff1a;311页 阅读时间&#xff1a;2023-06-24 推荐指数&#xff1a;★★★★☆ 本文介绍SpringBoot 2.0.5 、JDK 1.8&#xff0c;虽然现在已经不维护了&#xff0c;但是大体的流程还是对口的&#xff0c; 而且书里面讲…

Vite + Vue3 实现前端项目工程化

通过官方脚手架初始化项目 第一种方式&#xff0c;这是使用vite命令创建&#xff0c;这种方式除了可以创建vue项目&#xff0c;还可以创建其他类型的项目&#xff0c;比如react项目 npm init vitelatest 第二种方式&#xff0c;这种方式是vite专门为vue做的配置&#xff0c;…

【算法】滑动窗口破解长度最小子数组

Problem: 209. 长度最小的子数组 文章目录 题意分析算法原理讲解暴力枚举O(N^2)利用单调性&#xff0c;滑动窗口求解 复杂度Code 题意分析 首先来分析一下本题的题目意思 题目中会给到一个数组&#xff0c;我们的目的是找出在这个数组中 长度最小的【连续】子数组&#xff0c;而…