一些3D数据集的简单介绍

一、Objaverse 1.0

Objaverse 1.0: a large dataset of objects with 800K+ (and growing) 3D models with descriptive captions, tags and animations. Assets not only belong to varied categories like animals, humans, and vehicles, but also include interiors and exteriors of large spaces that can be used, e.g., to train embodied agents(具身智能是Embodied Intelligence,这个应该可以理解为机器人)

Objaverse 1.0 includes 818K 3D objects. There are >2.35M tags on the objects, with >170K of them being unique. We estimate that the objects have coverage for nearly 21K WordNet entities. Objects were uploaded between 2012 and 2022, with over 200K objects uploaded just in 2021. 下图是Objaverse数据集的一些数据展示,包括物体所属的Sketchfab categories、tags的词云、tags的频率图、Objaverse-LVIS categories中的object数量

请添加图片描述

Objaverse contains 3D models for many diverse categories including tail categories which are not represented in other datasets. It also contains diverse and realistic object instances per category. Qualitatively, the 3D-meshes generated by the Objaverse-trained models are high-quality and diverse, especially when compared to the generations from the ShapeNet-trained model.

在这里插入图片描述

上图是Objaverse的作者,分别基于Objaverse的Bag分类和ShapeNet的bag分类,训练了一个模型,生成的3D物体效果。结果就是前者质量更高一点,然后说是91%的情况下Objaverse训练的模型生成的物体在外观上更具多样化

The objects are sourced from Sketchfab, an online 3D marketplace where users can upload and share models for both free and commercial use. Objects selected for Objaverse have a distributable Creative Commons license and were obtained using Sketchfab’s public API.

Objaverse objects inherit a set of foundational annotations supplied by their creator when uploaded to Sketchfab. 下图展示了每个model的可用metadata示例,metadata包括一个名字、一些固定属性、一些tags、和一个自然语言描述
在这里插入图片描述

在这里插入图片描述
上图是Objaverse和ShapeNet数据集关于车辆、床铺、花瓶和书包这四类的物体模型对比,可见ShapeNet的模型相比起来就非常简单,因为Objaverse的对象来自许多3D内容创建平台,而ShapeNet都来自SketchUp(一个为简单的建筑建模而构建的3D建模平台)。91%的情况下Objaverse训练的模型生成的物体在外观上更具多样化

Objaverse-XL: 2023.7.11

Objaverse-XL is 12x larger than Objaverse 1.0 and 100x larger than all other 3D datasets combined.
Objaverse-XL comprises of over 10 million 3D objects, representing an order of magnitude more data than the recently proposed Objaverse 1.0 and is two orders of magnitude larger than ShapeNet.

Objaverse-XL is comprised of 10.2M 3D assets.

Objaverse-XL is composed of 3D objects coming from several sources, including GitHub, Thingiverse, Sketchfab, Polycom, and the Smithsonian Institution. While the data sourced from Sketchfab for our project is specifically from Objaverse 1.0, a dataset of 800K objects consisting of Creative Commons-licensed 3D models. Each model is distributed as a standardized GLB file.

Objaverse-XL评Objaverse 1.0:Objaverse 1.0 introduced a 3D dataset of 800K 3D models with high quality and diverse textures, geometry and object types, making it 15× larger than prior 3D datasets. While impressive and a step toward a large-scale 3D dataset, Objaverse 1.0 remains several magnitudes smaller than dominant datasets in vision and language. As seen in Figure 2 and Table 1, Objaverse-XL extends Objaverse 1.0 to an even larger 3D dataset of 10.2M unique objects from a diverse set of sources, object shapes, and categories.

在这里插入图片描述

ShapeNet: 2015.12.9

Objaverse-XL评ShapeNet:ShapeNet has served as the tesetbed for modeling, representing and predicting 3D shapes in the era of deep learning. Notwithstanding its impact, ShapeNet objects are of low resolution and textures are often overly simplistic. Other datasets such as ABO, GSO, and OmniObjects3D improve on the texture quality of their CAD models but are significantly smaller in size.

Objaverse-XL评ShapeNet:3D datasets such as ShapeNet rely on professional 3D designers using expensive software to create assets, making the process tremendously difficult to crowdsource and scale.

ShapeNet has indexed more than 3,000,000 models, 220,000 models of these models are classified into 3,135 categories (WordNet sunsets).

In order for the dataset to be easily usable by researchers it should contain clean and high quality 3D models. We identify and group 3D models into the following categories: single 3D models, 3D scenes, billboards, and big ground plane. We currently include the single 3D models in the ShapeNetCore subset of ShapeNet.

ShapeNetCore is a subset of the full ShapeNet dataset with single clean 3D models and manually verified category and alignment annotations. It covers 55 common object categories with about 51,300 unique 3D models.

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/858020.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL之复制(十三)

复制 复制的问题和解决方案 在主-主复制结构总写入两台主库 试图向两台主库写入并不是一个好主意,如果同时还希望安全地写入两台主库,会碰到很多问题,有些问题可以解决,有些则很难。一个专业人员可能需要经历大量的教训才能明白…

“Driver not loaded“问题解决方案

这两天又碰到了离谱的,愚蠢的,莫名其妙的,丧尽天良的错误。 之前已经解决过这个问题。这几天又碰上了,明明都已经把相应的dll放到了exe的同级目录,NND还是有问题!!!卡了我一个晚上加…

c库函数:strrchr使用demo案例

1. strrchr库函数说明 头文件 <string.h> 函数形式 char *strrchr( const char *str, int ch ); 功能 在str所指向的空终止字节串中寻找字符ch的最后出现。 参数 str - 指向要分析的空终止字节字符串的指针 ch - 要搜索的字符 返回值 指向 str 中找到的字符的…

Emacs之实现目录替换(一百四十三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

vue 中监听生命周期事件

vue 中监听生命周期事件 常见的添加自定义事件的写法希望在子组件挂载时通知父组件在模板上监听组件生命周期vue3 有类似的写法吗&#xff1f;jsx 中如何监听 vue3 组件的生命周期事件呢&#xff1f; vue3 父组件组件的生命周期的执行顺序是什么&#xff1f;小结 vue2 提供了一…

pytest测试框架pytest-rerunfailures插件重试失败用例

Pytest提供了丰富的插件来扩展其功能&#xff0c;介绍下插件pytest-rerunfailures &#xff0c;用于在测试用例失败时自动重新运行这些测试用例。 pytest-rerunfailures官方显示的python和pytest版本限制&#xff1a; Python 3.8pytest 7.2 或更新版本 此插件可以通过以下可…

Scala运算符及流程控制

Scala运算符及流程控制 文章目录 Scala运算符及流程控制写在前面运算符算数运算符关系运算符赋值运算符逻辑运算符位运算符运算符本质 流程控制分支控制单分支双分支多分支 循环控制for循环while循环循环中断嵌套循环 写在前面 操作系统&#xff1a;Windows10JDK版本&#xff…

1027. 方格取数

Powered by:NEFU AB-IN Link 文章目录 1027. 方格取数题意思路代码 1027. 方格取数 题意 某人从图中的左上角 A 出发&#xff0c;可以向下行走&#xff0c;也可以向右行走&#xff0c;直到到达右下角的 B 点。 在走过的路上&#xff0c;他可以取走方格中的数&#xff08;取…

FOC方案大合集!

获取链接&#xff01;&#xff01;&#xff01; 本次小编给大家带来了一份FOC的方案大合集。此套方案是基于峰岹科技FU68系列MCU的系列方案&#xff0c;包含常用的无感&#xff0c;有感无刷电机的应用&#xff0c;每份方案都包含了原理图&#xff0c;PCB&#xff0c;代码文件&…

【TOOL】ceres学习笔记(一) —— 教程练习

文章目录 一、Ceres Solver 介绍二、Ceres 使用基本步骤1. 构建最小二乘问题2. 求解最小二乘问题 三、使用案例1. Ceres Helloworld2. Powell’s Function3. Curve Fitting4. Robust Curve Fitting 一、Ceres Solver 介绍 Ceres-solver 是由Google开发的开源C库&#xff0c;用…

2024年P气瓶充装证模拟考试题库及P气瓶充装理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年P气瓶充装证模拟考试题库及P气瓶充装理论考试试题是由安全生产模拟考试一点通提供&#xff0c;P气瓶充装证模拟考试题库是根据P气瓶充装最新版教材&#xff0c;P气瓶充装大纲整理而成&#xff08;含2024年P气瓶…

[Open-source tool]Uptime-kuma的簡介和安裝於Ubuntu 22.04系統

[Uptime Kuma]How to Monitor Mqtt Broker and Send Status to Line Notify Uptime-kuma 是一個基於Node.js的開軟軟體&#xff0c;同時也是一套應用於網路監控的開源軟體&#xff0c;其利用瀏覽器呈現直觀的使用者介面&#xff0c;如圖一所示&#xff0c;其讓使用者可監控各種…

足底筋膜炎的症状

足底筋膜炎是足底的肌腱或者筋膜发生无菌性炎症所致&#xff0c;其症状主要包括&#xff1a; 1、疼痛&#xff1a;这是足底筋膜炎最常见和突出的症状。疼痛通常出现在足跟或足底近足跟处&#xff0c;有时压痛较剧烈且持续存在。晨起时或长时间不活动后&#xff0c;疼痛感觉尤为…

高通安卓12-安卓系统定制2

将开机动画打包到system.img里面 在目录device->qcom下面 有lito和qssi两个文件夹 现在通过QSSI的方式创建开机动画&#xff0c;LITO方式是一样的 首先加入自己的开机动画&#xff0c;制作过程看前面的部分 打开qssi.mk文件&#xff0c;在文件的最后加入内容 PRODUCT_CO…

Python | Leetcode Python题解之第174题地下城游戏

题目&#xff1a; 题解&#xff1a; class Solution:def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:n, m len(dungeon), len(dungeon[0])BIG 10**9dp [[BIG] * (m 1) for _ in range(n 1)]dp[n][m - 1] dp[n - 1][m] 1for i in range(n - 1, -1, …

一文读懂LLM API应用开发基础(万字长文)

前言 Hello&#xff0c;大家好&#xff0c;我是GISer Liu&#x1f601;&#xff0c;一名热爱AI技术的GIS开发者&#xff0c;上一篇文章中我们详细介绍了LLM开发的基本概念&#xff0c;包括LLM的模型、特点能力以及应用&#xff1b;&#x1f632; 在本文中作者将通过&#xff1a…

Redis—Set数据类型及其常用命令详解

文章目录 一、Redis概述Set类型1 SADD:向集合&#xff08;Set&#xff09;中添加一个或多个成员2 SCARD:获取集合&#xff08;Set&#xff09;中成员数量3 SDIFF:获取多个集合之间的差集4 SDIFFSTORE:计算多个集合之间的差集&#xff0c;并将结果存储在指定的目标集合中5 SMEMB…

Android 你应该知道的学习资源 进阶之路贵在坚持

coderzheaven 覆盖各种教程&#xff0c;关于Android基本时案例驱动的方式。 非常推荐 thenewcircle 貌似是个培训机构&#xff0c;多数是收费的&#xff0c;不过仍然有一些free resources值得你去挖掘。 coreservlets 虽然主打不是android&#xff0c;但是android的教程也​ 是…

Linux配置中文环境

文章目录 前言中文语言包中文输入法中文字体 前言 在Linux系统中修改为中文环境&#xff0c;通常涉及以下几个步骤&#xff1a; 中文语言包 更新源列表&#xff1a; 更新系统的软件源列表和语言环境设置&#xff0c;确保可以安装所需的语言包。 sudo apt update sudo apt ins…

华为某员工爆料:三年前985本科起薪30万,现在硕士起薪还是30w,感慨互联网行情变化

“曾经的30万年薪&#xff0c;是985本科学历的‘标配’&#xff0c;如今硕士也只值这个价&#xff1f;” 一位华为员工的爆料&#xff0c;揭开了互联网行业薪资变化的冰山一角&#xff0c;也引发了不少人的焦虑&#xff1a;互联网人才“通货膨胀”的时代&#xff0c;真的结束了…