【CS.AL】算法必学之贪心算法:从入门到进阶 —— 关键概念和代码示例

文章目录

    • 1. 概述
    • 2. 适用场景
    • 3. 设计步骤
    • 4. 优缺点
    • 5. 典型应用
    • 6. 题目和代码示例
      • 6.1 简单题目:找零问题
      • 6.2 中等题目:区间调度问题
      • 6.3 困难题目:分数背包问题
    • 7. 题目和思路表格
    • 8. 总结
    • References

1000.1.CS.AL.1.4-核心-GreedyAlgorithm-Created: 2024-06-13.Thursday17:47
在这里插入图片描述

1. 概述

贪心算法是一种求解优化问题的算法策略。在每一步选择中,贪心算法都会选择当前最优解,希望通过一系列局部最优解的选择,达到全局最优解。贪心算法不回溯,不进行全局考虑,而是根据局部情况作出当前最优的选择。

2. 适用场景

贪心算法适用于一类特殊问题,即具有贪心选择性质的问题。这类问题满足每一步的选择都是局部最优的,并且不同步骤之间没有依赖关系,可以独立地做出选择。在这种情况下,贪心算法通常可以找到全局最优解或者近似最优解。

3. 设计步骤

  1. 确定问题的最优解性质:贪心算法求解问题时,首先要确定问题是否具有最优子结构和贪心选择性质。如果满足这两个性质,那么贪心算法可能是可行的。
  2. 选择合适的贪心策略:在每一步中,需要选择一个局部最优解。这就要根据问题的具体特点,设计适合的贪心策略,使得每次选择都是当前的最优解。
  3. 构建贪心算法:根据选择的贪心策略,逐步构建出贪心算法,不断做出当前最优的选择,直至达到全局最优解或者满足问题的要求。

4. 优缺点

  • 优点:贪心算法通常简单、高效,且易于实现。在一些特定问题中,贪心算法可以快速找到最优或近似最优解。
  • 缺点:贪心算法并不适用于所有问题,有些问题并不具备贪心选择性质,因此贪心算法可能得到局部最优解而不是全局最优解。在这种情况下,需要考虑其他算法策略。

5. 典型应用

  • 最小生成树问题:如Prim算法和Kruskal算法用于求解图中的最小生成树。
  • 背包问题:如分数背包问题、0-1背包问题等,贪心算法在某些情况下可以得到近似最优解。
  • 霍夫曼编码:用于数据压缩,通过贪心选择构建最优前缀编码。
  • 最短路径问题:如Dijkstra算法和A*算法用于求解图中的最短路径。

6. 题目和代码示例

6.1 简单题目:找零问题

题目描述:给定不同面值的硬币,求最少硬币数使得总金额为给定值。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 函数声明
int coinChange(std::vector<int>& coins, int amount);int main() {std::vector<int> coins = {1, 2, 5};int amount = 11;std::cout << "最少硬币数: " << coinChange(coins, amount) << std::endl;return 0;
}// 找零问题:求最少硬币数
int coinChange(std::vector<int>& coins, int amount) {// 步骤 1: 对硬币面值从大到小排序std::sort(coins.rbegin(), coins.rend());int count = 0;// 步骤 2: 遍历硬币面值,逐步减少目标金额for (int coin : coins) {while (amount >= coin) {amount -= coin;count++;}}// 步骤 3: 检查是否正好找零成功return amount == 0 ? count : -1;
}

Ref. ![[1000.03.CS.PL.C++.4.2-STL-Algorithms-SortingOperations#1.1 简述]]

Others.

def coin_change(coins, amount):coins.sort(reverse=True)count = 0for coin in coins:while amount >= coin:amount -= coincount += 1return count if amount == 0 else -1# 示例
coins = [1, 2, 5]
amount = 11
print(coin_change(coins, amount))  # 输出: 3 (5 + 5 + 1)

6.2 中等题目:区间调度问题

题目描述:给定多个会议的开始和结束时间,求最多能安排的会议数量。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 会议结构体
struct Meeting {int start;int end;
};// 函数声明
int maxMeetings(std::vector<Meeting>& meetings);int main() {std::vector<Meeting> meetings = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}};std::cout << "最多能安排的会议数量: " << maxMeetings(meetings) << std::endl;return 0;
}// 区间调度问题:求最多能安排的会议数量
int maxMeetings(std::vector<Meeting>& meetings) {// 步骤 1: 根据会议结束时间排序std::sort(meetings.begin(), meetings.end(), [](const Meeting& a, const Meeting& b) {return a.end < b.end;});int count = 0;int endTime = 0;// 步骤 2: 遍历会议,选择结束时间最早的会议for (const auto& meeting : meetings) {if (meeting.start >= endTime) {count++;endTime = meeting.end;}}return count;
}

ref.

def max_meetings(meetings):meetings.sort(key=lambda x: x[1])count = 0end_time = 0for meeting in meetings:if meeting[0] >= end_time:count += 1end_time = meeting[1]return count# 示例
meetings = [(1, 2), (3, 4), (0, 6), (5, 7), (8, 9), (5, 9)]
print(max_meetings(meetings))  # 输出: 4

6.3 困难题目:分数背包问题

题目描述:给定物品的重量和价值,求在背包容量限制下的最大价值,物品可以分割。

代码示例

#include <iostream>
#include <vector>
#include <algorithm>// 物品结构体
struct Item {double value;double weight;
};// 函数声明
double fractionalKnapsack(std::vector<Item>& items, double capacity);int main() {std::vector<Item> items = {{60, 10}, {100, 20}, {120, 30}};double capacity = 50;std::cout << "背包的最大价值: " << fractionalKnapsack(items, capacity) << std::endl;return 0;
}// 分数背包问题:求在背包容量限制下的最大价值
double fractionalKnapsack(std::vector<Item>& items, double capacity) {// 步骤 1: 根据物品单位重量价值排序std::sort(items.begin(), items.end(), [](const Item& a, const Item& b) {return (a.value / a.weight) > (b.value / b.weight);});double totalValue = 0;// 步骤 2: 遍历物品,选择单位重量价值最高的物品for (const auto& item : items) {if (capacity >= item.weight) {capacity -= item.weight;totalValue += item.value;} else {totalValue += item.value * (capacity / item.weight);break;}}return totalValue;
}

ref.

def fractional_knapsack(values, weights, capacity):items = list(zip(values, weights))items.sort(key=lambda x: x[0] / x[1], reverse=True)total_value = 0for value, weight in items:if capacity >= weight:capacity -= weighttotal_value += valueelse:total_value += value * (capacity / weight)breakreturn total_value# 示例
values = [60, 100, 120]
weights = [10, 20, 30]
capacity = 50
print(fractional_knapsack(values, weights, capacity))  # 输出: 240.0

7. 题目和思路表格

序号题目题目描述贪心策略代码实现
1找零问题求最少硬币数使得总金额为给定值每次选择面值最大的硬币代码
2区间调度问题求最多能安排的会议数量每次选择结束时间最早的会议代码
3分数背包问题求在背包容量限制下的最大价值每次选择单位重量价值最高的物品代码
4最小生成树用于求解图中的最小生成树每次选择权重最小的边-
5霍夫曼编码用于数据压缩每次选择频率最低的节点进行合并-
6最短路径用于求解图中的最短路径每次选择当前节点到未访问节点的最短路径-
7活动选择问题求最多可选择的互不相交的活动每次选择结束时间最早的活动-
8跳跃游戏判断能否跳到最后一个位置每次选择跳跃距离最大的步骤-
9加油站问题求最少加油次数到达目的地每次选择油量最多的加油站-
10股票买卖求最大收益每次选择局部最低点买入,局部最高点卖出-

8. 总结

贪心算法是一种简单而高效的算法策略,在解决满足贪心选择性质的问题时,能够得到较好的结果。然而,要注意贪心算法的局限性,它不适用于所有问题,有些问题需要考虑其他算法设计策略,如分治、动态规划等。因此,在实际应用中,需要根据问题的性质和要求选择合适的算法策略。通过理解和掌握上述贪心算法的例子和思路,能够有效地提升解决问题的能力。

References

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/852952.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

李永乐线代笔记

线性方程组 解方程组的变换就是矩阵初等行变换 三秩相等 方程组系数矩阵的行秩列秩&#xff0c;线性相关的问题应求列秩&#xff0c;但求行秩方便 齐次线性方程组 对应向量组的线性相关&#xff0c;所以回顾下线性相关的知识&#xff1a; 其中k是x&#xff0c;所以用向…

Leaflet集成wheelnav在WebGIS中的应用

目录 前言 一、两种错误的实现方式 1、组件不展示 2、意外中的空白 二、不同样式的集成 1、在leaflet中集成wheelnav 2、给marker绑定默认组件 2、面对象绑定组件 3、如何自定义样式 三、总结 前言 在之前的博客中&#xff0c;我们曾经介绍了使用wheelnav.js构建酷炫…

http穿透怎么做?

众所周知http协议的默认端口是80&#xff0c;由于国家工信部要求&#xff0c;域名必须备案才给开放80端口&#xff0c;而备案需要固定公网IP&#xff0c;这就使得开放http80端口的费用成本和时间成本变的很高。那么能不能利用内网穿透技术做http穿透呢&#xff1f;下面我就给大…

【C语言】14. qsort 的底层与模拟实现

一、回调函数 回调函数就是⼀个通过函数指针调用的函数。 把函数的指针&#xff08;地址&#xff09;作为参数传递给另⼀个函数&#xff0c;当这个指针被用来调用其所指向的函数时&#xff0c;被调用的函数就是回调函数。回调函数不是由该函数的实现方直接调用&#xff0c;而是…

二分【3】 旋转数组

目录 旋转数组 旋转数组找最小值 旋转数组找指定值 严格递增序列 递增序列 旋转序列找中位数&#xff1a; 旋转数组 旋转数组找最小值 思路 #include <iostream> #include <vector> #include <cmath> #include <string> #include <cstrin…

03通讯录管理系统——菜单功能

功能描述&#xff1a;用户选择功能的界面 菜单界面效果如下图&#xff1a; 步骤&#xff1a; 1.封装函数显示该界面&#xff0c;如void showMenu() 2.在main函数中调用封装好的函数 代码&#xff1a; 运行结果

【INTEL(ALTERA)】Quartus® 软件 Pin Planner 中 Agilex™ 5 FPGA的 HSIO 库可以选择 1.8V VCCIO?

目录 说明 解决方法 说明 由于 Quartus Prime Pro Edition 软件版本 24.1 存在一个问题&#xff0c;Quartus 软件 Pin Planner 中的 I/O 组属性 GUI 允许用户选择 1.8V 作为 HSIO 银行位置的 VCCIO。HSIO bank 支持的有效 VCCIO 电压仅为 1.0V、1.05V、1.1V、1.2V 和 1.3V。…

Java--数组的使用

1.普通For循环&#xff08;用的最多&#xff0c;需从中取出数据以及下标&#xff09; eg&#xff1a;图中三类问题都可 2.For-each循环&#xff08;一般用来打印一些结果&#xff09; eg&#xff1a;打印数组的具体元素 3.数组作方法入参&#xff08;对数组进行一些操作&#x…

蓝牙资讯|苹果iOS 18增加对AirPods Pro 2自适应音频的更多控制

苹果 iOS 18 系统将为 AirPods Pro 2 用户带来一项实用功能 —— 更精细的“自适应音频”控制。AirPods Pro 2 的“自适应音频”功能包含自适应降噪、个性化音量和对话增强等特性&#xff0c;可以根据周围环境自动调节声音和降噪效果。 当更新至最新测试版固件的 AirPods Pro 2…

KVM+GFS分布式存储系统构建高可用群集

KVMGFS 分布式存储系统构建 KVM 高可用群集 一&#xff1a;理论概述 1.1&#xff1a;Glusterfs 简介 Glusterfs 文件系统是由 Gluster 公司的创始人兼首席技术官 Anand Babu Periasamy编写。 一个可扩展的分布式文件系统&#xff0c; 用于大型的、 分布式的、 对大量数据进行访…

泛微开发修炼之旅--15后端开发连接外部数据源,实现在ecology系统中查询其他异构系统数据库得示例和源码

文章链接&#xff1a;15后端开发连接外部数据源&#xff0c;实现在ecology系统中查询其他异构系统数据库得示例和源码

太速科技-4通道 12bit 125Msps 直流耦合 AD FMC 子卡

4通道 12bit 125Msps 直流耦合 AD FMC 子卡 一、板卡概述: FMC 高速 AD 模块 FL9627 为 4 路 125MSPS&#xff0c; 12 位的模拟信号转数字信号模块。 FMC 模块的 AD 转换采用了 2 片 ADI 公司的 AD9627 芯片&#xff0c;每个 AD9627 芯片支持 2 路 AD 输入转换&#x…

Django UpdateView视图

UpdateView是Django中的一个通用视图&#xff0c;用于处理对象的更新操作。它允许用户更新一个已经存在的对象。UpdateView通常与一个模型表单一起使用&#xff0c;这样用户就可以看到当前对象的值&#xff0c;并可以修改它们。 1&#xff0c;添加视图 Test/app3/views.py fr…

云原生化有什么特点?

云原生化&#xff0c;作为一种先进的构建和管理应用程序的方式&#xff0c;不仅代表着技术的革新&#xff0c;更是云计算时代下的必然产物。其核心目标在于充分发掘并发挥云计算平台的各项优势&#xff0c;使应用程序在性能、弹性、可靠性和安全性等方面达到前所未有的高度。 它…

OpenCV图像变换

一 图像的缩放 resize(src,dst,dsize,fx,fy,interpolation) fx&#xff1a;x轴的缩放因子 fy&#xff1a;y轴的缩放因子 interpolation 插值算法 INTER_NEAREST,临近插值&#xff0c;速度快&#xff0c;效果差 INTER_LINEAR,双线性插值&#xff0c;原图中的4个点 INTER_CUBIC…

Redis通用命令

Redis是一种高性能的开源内存数据结构存储&#xff0c;用作数据库、缓存和消息代理。它支持多种数据结构&#xff0c;如字符串&#xff08;strings&#xff09;、哈希&#xff08;hashes&#xff09;、列表&#xff08;lists&#xff09;、集合&#xff08;sets&#xff09;及有…

ABB 和PLC ProfinN 通信

1,设置IP 地址 2&#xff0c; 设置站名称 3&#xff0c; 修改传送区大小 4,配置DI DO 5,导出 6&#xff0c;安装gsd 文件 7&#xff0c;建立通信

深度学习笔记: 最详尽估算送达时间系统设计

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家&#xff01; 估算送达时间 1. 问题陈述 构建一个模型来估算在给定订单详情、市场条件和交通状况下的总送达时间。 为…

LeetCode | 168.Excel表列名称

这道题一开始以为是简单的进制转换问题&#xff0c;用的以往的思路&#xff0c;对于一般性的进制转换题目&#xff0c;只需要不断地对 columnNumber 进行 % 运算取得最后一位&#xff0c;然后对 columnNumber 进行 / 运算&#xff0c;将已经取得的位数去掉&#xff0c;直到 col…

ZYNQ7 Processing System IP核中PS侧Uart的用法

在ZYNQ7 Processing System IP核中集成的UART控制器是一个中全双工异步接收器和发送器&#xff0c;支持广泛的可编程波特率和I/O信号格式&#xff0c;可以适应自动奇偶校验生成和多主机检测模式。 UART操作由配置和模式寄存器控制。使用状态寄存器、中断状态寄存器和调制解调器…