【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总

网安AIGC专题

  • 写在最前面
    • 一些碎碎念
    • 课程简介
  • 0、课程导论
  • 1、应用 - 代码生成
  • 2、应用 - 漏洞检测
  • 3、应用 - 程序修复
  • 4、应用 - 生成测试
  • 5、应用 - 其他
  • 6、模型介绍
  • 7、模型增强
  • 8、数据集
  • 9、模型安全

请添加图片描述

🌈你好呀!我是 是Yu欸
🌌 2024每日百字篆刻时光,感谢你的陪伴与支持 ~
🚀 欢迎一起踏上探险之旅,挖掘无限可能,共同成长!

写在最前面

请添加图片描述

本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。

本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程序修复、生成测试等多个应用方向,深刻展示了这些技术如何在网络安全领域中起到革命性作用。同时,本系列还细致地介绍了大模型技术的基础架构、增强策略、关键数据集,以及与网络安全紧密相关的模型安全问题。

本篇博客旨在整理这些宝贵的笔记,方便未来的阅读和研究,同时也希望能够对广大读者产生启发和帮助。让我们一起踏上这场网络安全的未来探索之旅,共同在这个不断变化的领域中寻找属于我们的立足点。

一些碎碎念

纯散养、跨方向的直博开局,幸运的遇到了网络安全专题这门课,于是像每周组会一样在上课。
感谢邹德清、李珍、文明老师的授课,感谢课堂每一位同学的交流,受益匪浅。
带我打开一个全新视角,领略AIGC与大模型技术的革新之旅。同时理解最新的技术成就,发现它们的不足之处,并培养出创新能力。还有一些全英文PPT,“被迫”学了很多英文名词hh
对于我来说,这不仅仅是学术上的成长之旅,更是一次思维和视角的重大转变。通过课堂汇报、论文阅读和交流讨论,我逐渐培养了阅读论文的习惯,并学会了如何形成自己的思路。

这是2023秋季的三个月,也是积极的开始。希望之后的自己能延续每周阅读文献,积极推进科研进度,争取早日毕业!

课程简介

网络安全专题是针对当前热点安全问题进行研讨,通常分成四类热门主题进行介绍和研讨,包括的热门主题有:攻击行为与漏洞分析,分享最新的攻防进展;下一代网络安全,分享物联网、工控网络等相关协议安全、网络防御等技术;动态行为分析,分享内存相关安全以及动态污点技术等;人工智能安全,分享人工智能,人工智能安全应用,以及联邦学习安全等最新知识。

围绕着几个热门主题,在最近五年的信息安全顶尖会议上挑选一些代表性论文,组织学生研讨,启发他们理解最新成果,并发现最新成果的不足,从而达到培养创新能力的目的;另外也提高他们用英文介绍知识,以及进行讨论的能力。

0、课程导论

【网安AIGC专题10.11】软件安全+安全代码大模型
【网安AIGC专题10.11】①代码大模型的应用:检测、修复②其安全性研究:模型窃取攻击(API和网页接口) 数据窃取攻击 对抗攻击(用途:漏洞隐藏) 后门攻击(加触发器+标签翻转)

1、应用 - 代码生成

主题论文出处及时间论文笔记
Enabling Programming Thinking in Large Language Models Toward Code GenerationarXiv 2023.5.11
Self-Edit: Fault-Aware Code Editor for Code GenerationarXiv 2023.5.6
Improving Code Example Recommendations on Informal Documentation Using BERT and Query-Aware LSH: A Comparative StudyarXiv 2023.5.4
自动程序修复Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code GenerationarXiv 2023.5.2论文1:生成式模型GPT\CodeX填充式模型CodeT5\INCODER+大模型自动程序修复(生成整个修复函数、修复代码填充、单行代码生产、生成的修复代码排序和过滤)
代码生成Self-collaboration Code Generation via ChatGPTarXiv 2023.4.15论文3代码生成:ChatGPT+自协作代码生成+角色扮演(分析员、程序员、测试员)+消融实验、用于MBPP+HumanEval数据集
代码生成Improving Code Generation by Training with Natural Language FeedbackarXiv 2023.3.282 ILF利用人类编写的 自然语言反馈 来训练代码生成模型:自动化反馈生成+多步反馈合并+处理多错误反馈+CODEGEN -M ONO 6.1 B model
Learning Performance-Improving Code EditsarXiv 2023.2.15

2、应用 - 漏洞检测

论文出处及时间
Large Language Models of Code Fail at Completing Code with Potential BugsarXiv
Large Language Models and Simple, Stupid BugsarXiv 2023.3.20
Prompting Is All Your Need: Automated Android Bug Replay with Large Language ModelsarXiv
When GPT Meets Program Analysis: Towards Intelligent Detection of Smart Contract Logic Vulnerabilities in GPTScanarXiv

3、应用 - 程序修复

主题论文出处及时间论文笔记
Towards Generating Functionally Correct Code Edits from Natural Language Issue DescriptionsarXiv 2023.4.7
自动程序修复Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPTarXiv 2023.4.15 ChatRepair:ChatGPT+漏洞定位+补丁生成+补丁验证+APR方法+ChatRepair+不同修复场景+修复效果(韦恩图展示)
CCTEST: Testing and Repairing Code Completion SystemsICSE 2023
Examining Zero-Shot Vulnerability Repair with Large Language ModelsS&P 2023
自动程序修复Automated Program Repair in the Era of Large Pre-trained Language ModelsICSE 2023大模型自动程序修复(生成整个修复函数、修复代码填充、单行代码生产、生成的修复代码排序和过滤)+生成式模型GPT\CodeX填充式模型CodeT5\INCODER
漏洞修复How Effective Are Neural Networks for Fixing Security VulnerabilitiesarXiv论文6(顶会ISSTA 2023):提出新Java漏洞自动修复数据集:数据集 VJBench+大语言模型、APR技术+代码转换方法+LLM和DL-APR模型的挑战与机会
自动程序修复Conversational Automated Program RepairarXiv 2023.1.30论文7:Chatgpt/CodeX引入会话式 APR 范例+利用验证反馈+LLM 长期上下文窗口:更智能的反馈机制、更有效的信息合并策略、更复杂的模型结构、鼓励生成多样性
静默漏洞修复识别CoLeFunDa-Explainable Silent Vulnerability Fix IdentificationICSE 20238 CoLeFunDa华为团队:静默漏洞检测(识别+多分类)+数据增强、样本扩充+对比学习+微调+结果分析(降维空间,分类错误样本归纳,应用场景优势,有效性威胁分析)

4、应用 - 生成测试

主题论文出处及时间论文笔记
No More Manual Tests? Evaluating and Improving ChatGPT for Unit Test GenerationarXiv 2023.5.9
Finding Failure-Inducing Test Cases with ChatGPTarXiv 2023.4.30
Large Language Models are Edge-Case Fuzzers: Testing Deep Learning Libraries via FuzzGPTarXiv 2023.4.4
自动化测试Large Language Models are Few-shot Testers: Exploring LLM-based General Bug ReproductionarXiv 2022.9.239 LIBRO方法(ICSE2023顶会自动化测试生成):提示工程+查询LLM+选择、排序、后处理(测试用例函数放入对应测试类中,并解决执行该测试用例所需的依赖)
模糊测试Large Language Models are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language ModelsISSTA 202310 TitanFuzz完全自动化执行基于变异的模糊测试:生成式(如Codex)生成种子程序,逐步提示工程+第一个应用LLM填充模型(如InCoder)+差分测试

5、应用 - 其他

主题论文出处及时间论文笔记
信息提取CODEIE: Large Code Generation Models are Better Few-Shot Information ExtractorsarXiv 2023.5.1112 CODEIE用于NER和RE:顶刊OpenAI API调用、CodeX比chatgpt更好:提示工程设计+控制变量对比实验(格式一致性、模型忠实度、细粒度性能)
代码搜索On Contrastive Learning of Semantic Similarity for Code to Code SearcharXiv 2023.5.514Cosco跨语言代码搜索代码: (a) 训练阶段 相关程度的对比学习 对源代码(查询+目标代码)和动态运行信息进行编码 (b) 在线查询嵌入与搜索:不必计算相似性
生成知识图谱CodeKGC: Code Language Model for Generative Knowledge Graph ConstructionarXiv 2023.4.18
软件工程The Scope of ChatGPT in Software Engineering: A Thorough InvestigationarXiv15 ChatGPT在软件工程中的全面作用:程序语法(AST生成、表达式匹配) 静态行为、动态分析(数据依赖和污点分析、指针分析) 提示设计(角色提示、指令提示)
代码摘要Improving Few-shot Prompts with Relevant Static Analysis ProductsarXiv17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集
代码解释Comparing Code Explanations Created by Students and Large Language ModelsarXiv 2023.4.13论文13:理解和解释代码,GPT-3大型语言模型&学生创建的代码解释比较+错误代码的解释(是否可以发现并改正)
代码学习Active Code Learning: Benchmarking Sample-Efficient Training of Code ModelsarXiv 2023.4.811 Coreset-C 主动学习:特征选择+11种采样方法+CodeBERT、GraphCodeBERT+多分类(问题分类)二元分类(克隆检测)非分类任务(代码总结)
许可证版权保护CODEIPPROMPT: Intellectual Property Infringement Assessment of Code Language ModelsICML 202316CODEIPPROMPT:顶会ICML’23 从GitHub到AI,探索代码生成的侵权风险与缓解策略的最新进展:训练数据`有限制性许可;模型微调+动态Token过滤
LLM4SE综述Large Language Models for Software Engineering: A Systematic Literature ReviewarXiv 2023.9.1218LLM4SE革命性技术揭秘:大型语言模型LLM在软件工程SE领域的全景解析与未来展望 - 探索LLM的多维应用、优化策略与软件管理新视角

6、模型介绍

论文出处及时间
StarCoder: may the source be with you!arXiv 2023.5.9
Textbooks Are All You NeedarXiv 2023.6.20
Analysis of ChatGPT on Source CodearXiv

7、模型增强

主题论文出处及时间论文笔记
代码预训练ContraBERT: Enhancing Code Pre-trained Models via Contrastive LearningICSE 202319ContraBERT:顶会ICSE23 数据增强+对比学习+代码预训练模型,提升NLP模型性能与鲁棒性:处理程序变异(变量重命名)
持续学习Keeping Pace with Ever-Increasing Data: Towards Continual Learning of Code Intelligence ModelsICSE 202323REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
TRACED: Execution-aware Pre-training for Source CodearXiv
Symmetry-Preserving Program Representations for Learning Code SemanticsarXiv

8、数据集

主题论文出处及时间论文笔记
The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and GenerationarXiv 2023.5.9
错误代码补全Large Language Models of Code Fail at Completing Code with Potential BugsNeurIPS 202324 LLM错误代码补全:机器学习顶会NeurIPS‘23 智能体评估:自行构建数据集Buggy-HumanEval、Buggy-FixEval+错误代码补全+修复模型【网安AIGC专题11.22】
CCF CLLMSecEval: A Dataset of Natural Language Prompts for Security EvaluationsarXiv 2023.3.1622LLMSecEval数据集及其在评估大模型代码安全中的应用:GPT3和Codex根据LLMSecEval的提示生成代码和代码补全,CodeQL进行安全评估【网安AIGC专题11.22】
CrossCodeBench: Benchmarking Cross-Task Generalization of Source Code ModelsICSE 2023
数据增强Data Augmentation Approaches for Source Code Models: A Survey arXiv20源代码模型的数据增强方法:克隆检测、缺陷检测和修复、代码摘要、代码搜索、代码补全、代码翻译、代码问答、问题分类、方法名称预测和类型预测对论文进行分组【网安AIGC专题11.15】

9、模型安全

主题论文出处及时间
Multi-target Backdoor Attacks for Code Pre-trained ModelsarXiv
对抗攻击Discrete Adversarial Attack to Models of CodePLDI 2023

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/852922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EasyGBS服务器和终端配置

服务器配置 修改easygbs.ini sip/host为本机IP,否则终端能登录,无法视频。 [sip] host192.168.3.190 终端用于登录的用户名和密码 default_usertest default_passwordtest1234 default_guest_userguest default_guest_passwordtest1234终端配置 关…

【Postman的接口测试工具介绍】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

Excel最基本的常用函数

最基本最常用的函数,掌握了可以解决大部分问题。 (笔记模板由python脚本于2024年06月11日 19:05:56创建,本篇笔记适合熟悉excel的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free:大咖免费“圣…

原型模式(大话设计模式)C/C++版本

原型模式 C 参考&#xff1a;https://www.cnblogs.com/Galesaur-wcy/p/15924300.html #include <iostream> #include <string> using namespace std;class WorkExprerience { private:string workDate;string company;public:WorkExprerience() {}~WorkExprerie…

14.基于人类反馈的强化学习(RLHF)技术详解

基于人类反馈的强化学习&#xff08;RLHF&#xff09;技术详解 RLHF 技术拆解 RLHF 是一项涉及多个模型和不同训练阶段的复杂概念&#xff0c;我们按三个步骤分解&#xff1a; 预训练一个语言模型 (LM) &#xff1b;训练一个奖励模型 (Reward Model&#xff0c;RM) &#xf…

RabbitMQ实践——利用一致性Hash交换器做带权重的调度

在《RabbitMQ实践——利用一致性Hash交换器做负载均衡》一文中&#xff0c;我们介绍了如何开启一致性hash交换器&#xff0c;并实现了消息的负载均衡&#xff0c;以达到横向扩展消费者数量的能力。 但是现实中&#xff0c;可能存在这样的场景&#xff1a;一些队列所在的机器配置…

交易文本数据:情感分析 -另类数据交易- 舆情数据

交易文本数据:情感分析 这是三章中的第一章,专门介绍使用自然语言处理(NLP)和机器学习从文本数据中提取交易策略信号。 文本数据内容丰富但高度非结构化,因此需要更多预处理才能使ML算法提取相关信息。一个关键挑战是在不丢失其含义的情况下将文本转换为数值格式。我们将介绍…

第J7周:对于ResNeXt-50算法的思考

本文为&#x1f517;365天深度学习训练营中的学习记录博客 &#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 &#x1f680; 文章来源&#xff1a;K同学的学习圈子深度学习第J6周&#xff1a;ResNeXt-50实战解析K同学的学习圈子 在 ResNeXt 网络中&#xff0c;如果…

LeRobot——Hugging Face打造的机器人领域的Transformer架构

前言 如友人邓博士所说&#xff0c;“用 Stanford aloha 课题组提供的训练数据&#xff0c;训练他们研发的 Action Chunking Transformer 动作规划模型&#xff0c;训练结果&#xff0c;能用&#xff0c;但是稳定性有待提高 要提高稳定性&#xff0c;看来必须修改 Stanford a…

STM32学习笔记(三)--EXTI外部中断详解

&#xff08;1&#xff09;配置步骤1.配置RCC 打开外设时钟2.配置GPIO 选择端口输入模式3.配置AFIO 选择要用的一路GPIO 连接至EXTI 4.配置EXTI 选择边沿触发方式 上升沿 下降沿 双边沿 选择触发响应方式 中断响应 事件响应 5.配置NVIC 选择一个合适的优先…

喜讯:NetMarvel 深度合作伙伴「点金石」斩获2024·MAMA 营销增长奖

全球市场瞬息万变&#xff0c;如何让增长做到有迹可循&#xff1f; 5月20日&#xff0c;由 AppsFlyer 举办的「2024 MAMA 移动互联网高层峰会」在三亚拉开序幕。在本届颁奖典礼上&#xff0c;NetMarvel 深度合作伙伴——点金石&#xff08;GameGoing&#xff09; 荣获「营销增长…

PyQt5学习系列之新项目创建并使用widget

PyQt5学习系列之新项目创建并使用widget 前言报错新建项目程序完整程序总结 前言 新建项目&#xff0c;再使用ui转py&#xff0c;无论怎么样都打不开py文件&#xff0c;直接报错。 报错 Connected to pydev debugger (build 233.11799.298)新建项目程序 # Press ShiftF10 to…

【计算机视觉】人脸算法之图像处理基础知识(一)

图像处理基础知识&#xff08;一&#xff09; 1.图像的构成 图像的构成可以包括以下几方面知识&#xff1a; 1.像素&#xff1a;图像的基本单位&#xff0c;是图像中的一个点。每个像素都有特定的位置和色彩值。在数字图像中&#xff0c;像素的颜色通常由红、绿、蓝&#xf…

本地密码记录工具-KeePass

文章目录 软件界面软件下载KeePass配置KeePass修改中文创建数据库配置数据库锁定配置账户密码为不同应用配置账号密码插件安装及使用 数据库同步 在此之前&#xff0c;没有使用过类似的账户密码记录工具&#xff0c;甚至完全没有接触过&#xff0c;由于Edge浏览器自带保存密码并…

el-date-picker 有效时间精确到时分秒 且给有效时间添加标记

el-date-picker实现有效日期做标记且时分秒限制选择范围 代码如下&#xff1a; // html部分 <el-date-pickerv-model"dateTime"type"datetime":picker-options"pickerOptions" > </el-date-picker>// js部分 /*** 回放有效日期开始时…

通过MATLAB实现PID控制器,积分分离控制器以及滑模控制器

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 通过MATLAB实现PID控制器,积分分离控制器以及滑模控制器。通过对比三个算法可知&#xff0c;采用滑模控制算法&#xff0c;其具有最快的收敛性能&#xff0c;较强的鲁棒性&…

链路追踪-微服务小白入门(6)

背景 什么是链路追踪 随着微服务分布式系统变得日趋复杂&#xff0c;越来越多的组件开始走向分布式化&#xff0c;如分布式服务、分布式数据库、分布式缓存等&#xff0c;使得后台服务构成了一种复杂的分布式网络。在服务能力提升的同时&#xff0c;复杂的网络结构也使问题定…

Java语言+前端框架html+Thymeleaf +后端框架springboot开发的UWB智能定位系统源码 UWB三维可视化人员定位系统源码

Java语言前端框架htmlThymeleaf 后端框架springboot开发的UWB智能定位系统源码 UWB三维可视化人员定位系统源码 UWB定位系统基于B/S架构的软件和嵌入式硬件都具有很好的扩展性和兼容性&#xff0c;可以与其他系统接口&#xff08;比如&#xff1a;围界、AB门、高压电网、报警、…

对抗式生成模仿学习(GAIL)

目录 1 预先基础知识 1.1 对抗生成网络&#xff08;GAN&#xff09; 1.1.1 基本概念 1.1.2 损失函数 1.1.2.1 固定G&#xff0c;求解令损失函数最大的D 1.1.2.2 固定D&#xff0c;求解令损失函数最小的G 1.2 对抗式生成模仿学习特点 2 对抗式生成模仿学习&#xff08;…

【CS.PL】Lua 编程之道: 简介与环境设置 - 进度8%

1 初级阶段 —— 简介与环境设置 文章目录 1 初级阶段 —— 简介与环境设置1.1 什么是 Lua&#xff1f;特点?1.2 Lua 的应用领域1.3 安装 Lua 解释器1.3.1 安装1.3.2 Lua解释器的结构 1.4 Lua执行方式1.4.0 程序段1.4.1 使用 Lua REPL&#xff08;Read-Eval-Print Loop&#x…