Fourier变换的积分性质及其证明过程
一、积分性质
如果当 t → + ∞ t \to +\infty t→+∞时, g ( t ) = ∫ − ∞ t f ( t ) d t → 0 g(t) = \int_{ - \infty }^t {f(t){\rm{d}}t \to 0} g(t)=∫−∞tf(t)dt→0,则:
F [ ∫ − ∞ t f ( t ) d t ] = 1 j ω F [ f ( t ) ] \mathscr F\left[ {\int_{ - \infty }^t {f(t){\rm{d}}t} } \right] = \frac{1}{{{\rm{j}}\omega }} \mathscr F\left[ {f(t)} \right] F[∫−∞tf(t)dt]=jω1F[f(t)]
该式表明一个函数的积分后的Fourier变换等于这个函数的Fourier变换除以因子 j ω j\omega jω.
注意:
当 lim t → ∞ g ( t ) ≠ 0 \lim\limits_{t \to \infty } g(t) \ne 0 t→∞limg(t)=0时,积分性质应为:
F [ ∫ − ∞ t f ( t ) d t ] = 1 j ω F [ f ( t ) ] + π F ( 0 ) δ ( ω ) \mathscr F\left[ {\int_{ - \infty }^t {f(t){\rm{d}}t} } \right] = \frac{1}{{{\rm{j}}\omega }} \mathscr F\left[ {f(t)} \right]+ \pi F(0)\delta (\omega ) F[∫−∞tf(t)dt]=jω1F[f(t)]+πF(0)δ(ω)
即:
F [ ∫ − ∞ t f ( t ) d t ] = 1 j ω F ( ω ) + π F ( 0 ) δ ( ω ) \mathscr F\left[ {\int_{ - \infty }^t {f(t){\rm{d}}t} } \right] = \frac{1}{{{\rm{j}}\omega }} F({\omega})+ \pi F(0)\delta (\omega ) F[∫−∞tf(t)dt]=jω1F(ω)+πF(0)δ(ω)
其中: F ( ω ) = F [ f ( t ) ] F({\omega})=\mathscr F[f(t)] F(ω)=F[f(t)].
二、Fourier变换的积分性质的证明过程
证明:
根据高等数学理论,因为 d d t ∫ − ∞ t f ( t ) d t = f ( t ) \frac{d}{{dt}}\int_{ - \infty }^t {f(t){\rm{d}}t} = f(t) dtd∫−∞tf(t)dt=f(t),所以
F [ d d t ∫ − ∞ t f ( t ) d t ] = F [ f ( t ) ] (1) \mathscr F\left[ {\frac{d}{{dt}}\int_{ - \infty }^t {f(t){\rm{d}}t} } \right] = \mathscr F\left[ {f(t)} \right] \tag 1 F[dtd∫−∞tf(t)dt]=F[f(t)](1)
又根据Fourier变换的微分性质:
F [ g ′ ( t ) ] = j ω F [ g ( t ) ] \mathscr F[g'(t)]=j\omega \mathscr F[g(t)] F[g′(t)]=jωF[g(t)]
可得:
F [ d d t ∫ − ∞ t f ( t ) d t ] = j ω F [ ∫ − ∞ t f ( t ) d t ] (2) \mathscr F\left[ {\frac{d}{{dt}}\int_{ - \infty }^t {f(t){\rm{d}}t} } \right] =j\omega \mathscr F[\int_{ - \infty }^t {f(t){\rm{d}}t}] \tag2 F[dtd∫−∞tf(t)dt]=jωF[∫−∞tf(t)dt](2)
对比公式(1)和(2)可知:
F [ d d t ∫ − ∞ t f ( t ) d t ] = F [ f ( t ) ] = j ω F [ ∫ − ∞ t f ( t ) d t ] (3) \mathscr F\left[ {\frac{d}{{dt}}\int_{ - \infty }^t {f(t){\rm{d}}t} } \right] = \mathscr F\left[ {f(t)} \right] \\=j\omega \mathscr F[\int_{ - \infty }^t {f(t){\rm{d}}t}] \tag3 F[dtd∫−∞tf(t)dt]=F[f(t)]=jωF[∫−∞tf(t)dt](3)
因此可得:
F [ f ( t ) ] = j ω F [ ∫ − ∞ t f ( t ) d t ] (4) \mathscr F\left[ {f(t)} \right]=j\omega \mathscr F[\int_{ - \infty }^t {f(t){\rm{d}}t}] \tag4 F[f(t)]=jωF[∫−∞tf(t)dt](4)
对式子(4)两边除以 j ω j\omega jω得到:
F [ ∫ − ∞ t f ( t ) d t ] = 1 j ω F [ f ( t ) ] (5) \mathscr F[\int_{ - \infty }^t {f(t){\rm{d}}t}] =\frac{1}{j\omega}\mathscr F\left[ {f(t)} \right] \tag5 F[∫−∞tf(t)dt]=jω1F[f(t)](5)
证毕.