目录
一、链表
基础操作
二、(leetcode 203)移除链表元素
1.使用原来的链表
2.设置虚拟头结点
三、(leetcode 707)设计链表
四、(leetcode 206)反转链表
1.双指针法
2.递归法
一、链表
单链表定义
// 单链表
struct ListNode {int val; // 节点上存储的元素ListNode *next; // 指向下一个节点的指针ListNode(int x) : val(x), next(NULL) {} // 节点的构造函数
};
基础操作
1)删除节点
2) 添加节点
注意最后一个节点的删除,通过next指针进行删除操作
二、(leetcode 203)移除链表元素
力扣题目链接
状态:设置虚拟头结点方法AC,在原链表上直接操作待回顾
思路:
- 链表的其他节点是通过前一个节点来移除当前节点,头结点的移除是将头结点向后移动一位
- 设置一个虚拟头结点,移除后return dummyNode->next
1.使用原来的链表
class Solution {
public:ListNode* removeElements(ListNode* head, int val) {// 删除头结点while (head != NULL && head->val == val) { // 注意这里不是if,一串==val的ListNode* tmp = head;head = head->next;delete tmp;}// 删除非头结点ListNode* cur = head;while (cur != NULL && cur->next!= NULL) {if (cur->next->val == val) {ListNode* tmp = cur->next;cur->next = cur->next->next;delete tmp;} else {cur = cur->next;}}return head;}
};
2.设置虚拟头结点
class Solution {
public:ListNode* removeElements(ListNode* head, int val) {ListNode* dummyhead=new ListNode(0);//设置虚拟头节点dummyhead->next=head;ListNode* cur = dummyhead;while (cur->next != NULL) {if(cur->next->val == val) {ListNode* tmp = cur->next;cur->next = cur->next->next;delete tmp;} else {cur = cur->next;}}head = dummyhead->next;delete dummyhead;return head;}
};
三、(leetcode 707)设计链表
力扣题目链接
状态:其他功能已清楚,deleteAtIndex需要待看
class MyLinkedList {
public:// 定义链表节点结构体struct LinkedNode {int val;LinkedNode* next;LinkedNode(int val):val(val), next(nullptr){}};// 初始化链表MyLinkedList() {_dummyHead = new LinkedNode(0); // 这里定义的头结点 是一个虚拟头结点,而不是真正的链表头结点_size = 0;}// 获取到第index个节点数值,如果index是非法数值直接返回-1, 注意index是从0开始的,第0个节点就是头结点int get(int index) {if (index > (_size - 1) || index < 0) {return -1;}LinkedNode* cur = _dummyHead->next;while(index--){ // 如果--index 就会陷入死循环cur = cur->next;}return cur->val;}// 在链表最前面插入一个节点,插入完成后,新插入的节点为链表的新的头结点void addAtHead(int val) {LinkedNode* newNode = new LinkedNode(val);newNode->next = _dummyHead->next;_dummyHead->next = newNode;_size++;}// 在链表最后面添加一个节点void addAtTail(int val) {LinkedNode* newNode = new LinkedNode(val);LinkedNode* cur = _dummyHead;while(cur->next != nullptr){cur = cur->next;}cur->next = newNode;_size++;}// 在第index个节点之前插入一个新节点,例如index为0,那么新插入的节点为链表的新头节点。// 如果index 等于链表的长度,则说明是新插入的节点为链表的尾结点// 如果index大于链表的长度,则返回空// 如果index小于0,则在头部插入节点void addAtIndex(int index, int val) {if(index > _size) return;if(index < 0) index = 0; LinkedNode* newNode = new LinkedNode(val);LinkedNode* cur = _dummyHead;while(index--) {cur = cur->next;}newNode->next = cur->next;cur->next = newNode;_size++;}// 删除第index个节点,如果index 大于等于链表的长度,直接return,注意index是从0开始的void deleteAtIndex(int index) {if (index >= _size || index < 0) {return;}LinkedNode* cur = _dummyHead;while(index--) {cur = cur ->next;}LinkedNode* tmp = cur->next;cur->next = cur->next->next;delete tmp;//delete命令指示释放了tmp指针原本所指的那部分内存,//被delete后的指针tmp的值(地址)并非就是NULL,而是随机值。也就是被delete后,//如果不再加上一句tmp=nullptr,tmp会成为乱指的野指针//如果之后的程序不小心使用了tmp,会指向难以预想的内存空间tmp=nullptr;_size--;}// 打印链表void printLinkedList() {LinkedNode* cur = _dummyHead;while (cur->next != nullptr) {cout << cur->next->val << " ";cur = cur->next;}cout << endl;}
private:int _size;LinkedNode* _dummyHead;};
四、(leetcode 206)反转链表
力扣题目链接
状态:双指针法AC,递归法捋完思路AC、待回顾
1.双指针法
class Solution {
public:ListNode* reverseList(ListNode* head) {ListNode* temp; // 保存cur的下一个节点ListNode* cur = head;ListNode* pre = NULL;while(cur) {temp = cur->next; // 保存一下 cur的下一个节点,因为接下来要改变cur->nextcur->next = pre; // 翻转操作// 更新pre 和 cur指针pre = cur;cur = temp;}return pre;}
};
2.递归法
递归解题三部曲:
- 找整个递归的终止条件:递归应该在什么时候结束?
- 找返回值:应该给上一级返回什么信息?
- 本级递归应该做什么:在这一级递归中,应该完成什么任务?
class Solution {
public:ListNode* reverse(ListNode* pre,ListNode* cur){if(cur == NULL) return pre;ListNode* temp = cur->next;cur->next = pre;// 可以和双指针法的代码进行对比,如下递归的写法,其实就是做了这两步// pre = cur;// cur = temp;return reverse(cur,temp);}ListNode* reverseList(ListNode* head) {// 和双指针法初始化是一样的逻辑// ListNode* cur = head;// ListNode* pre = NULL;return reverse(NULL, head);}};