LangChain学习之Agent的相关操作

1.学习背景

在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。视频地址:基于LangChain的大语言模型应用开发+构建和评估。

2.Agent的学习和使用

有时LLM可能会使用它从互联网上学习的这些背景知识,但是也会利用你提供的新信息来帮助你回答问题,或者推理内容,甚至决定接下来要做什么。因此,如何创建自己的工具,可以让代理与任何数据存储、API、或者功能进行互动等等,如此有趣的功能,用起来才是强大!开始入门学习,以下代码基于jupyternotebook运行。

2.1 使用Langchain内置工具,先环境准备

import osfrom dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env fileimport warnings
warnings.filterwarnings("ignore")
from langchain.agents.agent_toolkits import create_python_agent
from langchain.agents import load_tools, initialize_agent
from langchain.agents import AgentType
from langchain.tools.python.tool import PythonREPLTool
from langchain.python import PythonREPL
from langchain.chat_models import ChatOpenAI

接下来如果你的环境版本较高,会出现如下报错:

ValueError                                Traceback (most recent call last)
Cell In[2], line 1
----> 1 from langchain.agents.agent_toolkits import create_python_agent2 from langchain.agents import load_tools, initialize_agent3 from langchain.agents import AgentTypeFile <frozen importlib._bootstrap>:1075, in _handle_fromlist(module, fromlist, import_, recursive)
...File ~/.python/current/lib/python3.10/site-packages/langchain/agents/agent_toolkits/__init__.py:120, in __getattr__(name)118 """Get attr name."""119 if name in DEPRECATED_AGENTS:
--> 120     relative_path = as_import_path(Path(__file__).parent, suffix=name)121     old_path = "langchain." + relative_path122     new_path = "langchain_experimental." + relative_path
ValueError: '/home/codespace/.python/current/lib/python3.10/site-packages/langchain/agents/agent_toolkits' is not in the subpath of '/home/codespace/.python/current/lib/python3.10/site-packages/langchain_core' OR one path is relative and the other is absolute.
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

这是因为最新版的Agent模块已调整至experimental部分,因此导入包需要调整如下:

 !pip install langchain_experimental
# 注意前两个包导入的位置
from langchain_experimental.agents.agent_toolkits import create_python_agent
from langchain_experimental.tools.python.tool import PythonREPLTool
from langchain.python import PythonREPL
from langchain.agents import load_tools, initialize_agent
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI

2.2 尝试使用agent

llm = ChatOpenAI(temperature=0)
# 工具类里使用math工具和wikipedia工具
tools = load_tools(["llm-math","wikipedia"], llm=llm)
# 调用initialize_agent初始化
agent= initialize_agent(tools, # 使用预置的toolsllm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, # 使用chatreactAgenthandle_parsing_errors=True, # 处理出错设置为True可以有效规避莫名bugverbose = True) # 开启日志打印
agent("What is the 25% of 300?")

输出如下:

> Entering new AgentExecutor chain...
Thought: We can use the calculator tool to find 25% of 300.
Action:
\```
{"action": "Calculator","action_input": "25% of 300"
}
\```
Observation: Answer: 75.0
Thought:I now know the final answer
Final Answer: 75.0> Finished chain.
{'input': 'What is the 25% of 300?', 'output': '75.0'}

在尝试问个问题,让chain自行调用wikipedia

question = "Tom M. Mitchell is an American computer scientist \
and the Founders University Professor at Carnegie Mellon University (CMU)\
what book did he write?"
result = agent(question) 

输出如下:

> Entering new AgentExecutor chain...
Thought: I should use Wikipedia to find out which book Tom M. Mitchell wrote.
Action:
\```
{"action": "wikipedia","action_input": "Tom M. Mitchell"
}
\```
Observation: Page: Tom M. Mitchell
Summary: Tom Michael Mitchell (born August 9, 1951) is an American computer scientist and the Founders University Professor at Carnegie Mellon University (CMU). He is a founder and former Chair of the Machine Learning Department at CMU. Mitchell is known for his contributions to the advancement of machine learning, artificial intelligence, and cognitive neuroscience and is the author of the textbook Machine Learning. He is a member of the United States National Academy of Engineering since 2010. He is also a Fellow of the American Academy of Arts and Sciences, the American Association for the Advancement of Science and a Fellow and past President of the Association for the Advancement of Artificial Intelligence. In October 2018, Mitchell was appointed as the Interim Dean of the School of Computer Science at Carnegie Mellon.Page: Tom Mitchell (Australian footballer)
Summary: Thomas Mitchell (born 31 May 1993) is a professional Australian rules footballer playing for the Collingwood Football Club in the Australian Football League (AFL). He previously played for the Sydney Swans from 2012 to 2016, and the Hawthorn Football Club between 2017 and 2022. Mitchell won the Brownlow Medal as the league's best and fairest player in 2018 and set the record for the most disposals in a VFL/AFL match, accruing 54 in a game against Collingwood during that season. He would later join them in 2023, en route to winning the 2023 AFL Grand Final and his first AFL premiership.
Thought:I have found out that Tom M. Mitchell wrote the textbook "Machine Learning."Final Answer: Machine Learning> Finished chain.

可以看到模型的action使用了 “wikipedia”。

2.3 尝试Python Agent

agent = create_python_agent(llm,tool=PythonREPLTool(), # 该工具可以理解为外置可运行代码的jupyternotebookverbose=True
)
# 给人名的List,对其进行排序
customer_list = [["Harrison", "Chase"], ["Lang", "Chain"],["Dolly", "Too"],["Elle", "Elem"], ["Geoff","Fusion"], ["Trance","Former"],["Jen","Ayai"]]
agent.run(f"""Sort these customers by \
last name and then first name \
and print the output: {customer_list}""") 

输出如下:

> Entering new AgentExecutor chain...
Python REPL can execute arbitrary code. Use with caution.
We can use the `sorted()` function in Python to sort the list of customers based on their last name and then first name.
Action: Python_REPL
Action Input: sorted([['Harrison', 'Chase'], ['Lang', 'Chain'], ['Dolly', 'Too'], ['Elle', 'Elem'], ['Geoff', 'Fusion'], ['Trance', 'Former'], ['Jen', 'Ayai']], key=lambda x: (x[1], x[0]))
Observation: 
Thought:I now know the final answer
Final Answer: [['Jen', 'Ayai'], ['Harrison', 'Chase'], ['Lang', 'Chain'], ['Elle', 'Elem'], ['Geoff', 'Fusion'], ['Trance', 'Former'], ['Dolly', 'Too']]> Finished chain.
"[['Jen', 'Ayai'], ['Harrison', 'Chase'], ['Lang', 'Chain'], ['Elle', 'Elem'], ['Geoff', 'Fusion'], ['Trance', 'Former'], ['Dolly', 'Too']]"

可以看到Action使用了Python_REPL工具,在解决任务过程中,使用了sorted()函数。

2.4 打开debug查看细节

import langchain
langchain.debug=True
agent.run(f"""Sort these customers by \
last name and then first name \
and print the output: {customer_list}""") 
langchain.debug=False

输出如下:

[chain/start] [chain:AgentExecutor] Entering Chain run with input:
{"input": "Sort these customers by last name and then first name and print the output: [['Harrison', 'Chase'], ['Lang', 'Chain'], ['Dolly', 'Too'], ['Elle', 'Elem'], ['Geoff', 'Fusion'], ['Trance', 'Former'], ['Jen', 'Ayai']]"
}
[chain/start] [chain:AgentExecutor > chain:LLMChain] Entering Chain run with input:
{"input": "Sort these customers by last name and then first name and print the output: [['Harrison', 'Chase'], ['Lang', 'Chain'], ['Dolly', 'Too'], ['Elle', 'Elem'], ['Geoff', 'Fusion'], ['Trance', 'Former'], ['Jen', 'Ayai']]","agent_scratchpad": "","stop": ["\nObservation:","\n\tObservation:"]
}
[llm/start] [chain:AgentExecutor > chain:LLMChain > llm:ChatOpenAI] Entering LLM run with input:
{"prompts": ["Human: You are an agent designed to write and execute python code to answer questions.\nYou have access to a python REPL, which you can use to execute python code.\nIf you get an error, debug your code and try again.\nOnly use the output of your code to answer the question. \nYou might know the answer without running any code, but you should still run the code to get the answer.\nIf it does not seem like you can write code to answer the question, just return \"I don't know\" as the answer.\n\n\nPython_REPL - A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Python_REPL]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Sort these customers by last name and then first name and print the output: [['Harrison', 'Chase'], ['Lang', 'Chain'], ['Dolly', 'Too'], ['Elle', 'Elem'], ['Geoff', 'Fusion'], ['Trance', 'Former'], ['Jen', 'Ayai']]\nThought:"]
}
[llm/end] [chain:AgentExecutor > chain:LLMChain > llm:ChatOpenAI] [4.28s] Exiting LLM run with output:
{"generations": [[{"text": "We can use the `sorted()` function in Python to sort the list of customers based on last name first and then first name.\nAction: Python_REPL\nAction Input: sorted([['Harrison', 'Chase'], ['Lang', 'Chain'], ['Dolly', 'Too'], ['Elle', 'Elem'], ['Geoff', 'Fusion'], ['Trance', 'Former'], ['Jen', 'Ayai']], key=lambda x: (x[1], x[0]))",
...
[chain/end] [chain:AgentExecutor] [9.23s] Exiting Chain run with output:
{"output": "[['Jen', 'Ayai'], ['Harrison', 'Chase'], ['Lang', 'Chain'], ['Elle', 'Elem'], ['Geoff', 'Fusion'], ['Trance', 'Former'], ['Dolly', 'Too']]"
}
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

3. 尝试使用自己写的tools

from langchain.agents import tool
from datetime import date# 定义tool工具,使用@tool装饰器完成,注意一定要写函数的功能细节描述,因为LLM在执行过程中要根据注释选择使用的工具
@tool
def time(text: str) -> str:"""Returns todays date, use this for any \questions related to knowing todays date. \The input should always be an empty string, \and this function will always return todays \date - any date mathmatics should occur \outside this function."""return str(date.today())agent= initialize_agent(tools + [time], # 往工具类列表中增加新增的time工具llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,handle_parsing_errors=True,verbose = True)# 为了避免奇怪的输出或者错误,使用try,except运行
try:result = agent("whats the date today?") 
except: print("exception on external access")

输出如下:

> Entering new AgentExecutor chain...
Thought: I should use the `time` tool to get today's date.
Action:
\```
{"action": "time","action_input": ""
}
\```Observation: 2024-06-05
Thought:Final Answer: 2024-06-05> Finished chain.

可以看到,在已有的工具类中,Agent调用time工具,输出了最终的结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/848334.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何令谷歌浏览器搜索时,子页面使用新窗口,而不是迭代打开

1 问题描述 工作相关需要常用谷歌浏览器&#xff0c;但是现在设置就是每次搜索后&#xff0c;点击搜索结果进去之后&#xff0c;都会覆盖掉原来的父页面&#xff0c;也就是如果我看完了这个子页面的内容&#xff0c;关掉的话&#xff0c;我就需要重新google.com来一遍。。。很…

Dinky MySQLCDC 整库同步到 MySQL jar包冲突问题解决

资源&#xff1a;flink 1.17.0、dinky 1.0.2 问题&#xff1a;对于kafka相关的包内类找不到的情况 解决&#xff1a;使用 flink-sql-connector- 胖包即可&#xff0c;去掉 flink-connector- 相关瘦包&#xff0c;解决胖瘦包冲突 source使用 flink-sql-connector- 胖包&#…

Java【springBoot和springCould引入外部jar包】

在项目的研发过程中&#xff0c;我们经常需要导入外部系统提供的jar包&#xff0c;并且这种jar包并没有上传到开源的maven仓库&#xff0c;属于内部环境的包&#xff0c;那么应该如何添加呢&#xff1f; springBoot 1、首先&#xff0c;将你的 JAR 文件拷贝到项目的 resource…

基础数学-求平方根(easy)

一、问题描述 二、实现思路 1.题目不能直接调用Math.sqrt(x) 2.这个题目可以使用二分法来缩小返回值范围 所以我们在left<right时 使 mid (leftright)/21 当mid*mid>x时&#xff0c;说明right范围过大&#xff0c;rightright-1 当mid*mid<x时&#xff0c;说明left范…

仅使用python标准库(不使用numpy)写一个小批量梯度下降的线性回归算法

看到一个有意思的题目&#xff1a;仅使用python的标准库&#xff0c;完成一个小批量梯度下降的线性回归算法 平常使用numpy这样的计算库习惯了&#xff0c;只允许使用标准库还有点不习惯&#xff0c;下面就使用这个过程来写一个。 import random from typing import List# 生…

层出不穷的大模型产品,你怎么选?【模板】

层出不穷的大模型产品&#xff0c;你怎么选&#xff1f; 随着近日腾讯元宝APP的正式上线&#xff0c;国内大模型产品又添一员。关于接连出现的“全能“大模型AIGC产品&#xff0c;你都用过哪些呢&#xff1f;不妨来分享一下你的使用体验吧&#xff01;在这些大模型产品中&…

使用Qt对word文档进行读写

目录 开发环境原理使用的QT库搭建开发环境准备word模板测试用例结果Gitee地址 开发环境 vs2022 Qt 5.9.1 msvc2017_x64&#xff0c;在文章最后提供了源码。 原理 Qt对于word文档的操作都是在书签位置进行插入文本、图片或表格的操作。 使用的QT库 除了基本的gui、core、…

鲁教版八年级数学上册-笔记

文章目录 第一章 因式分解1 因式分解2 提公因式法3 公式法 第二章 分式与分式方程1 认识分式2 分式的乘除法3 分式的加减法4 分式方程 第三章 数据的分析1 平均数2 中位数与众数3 从统计图分析数据的集中趋势4 数据的离散程度 第四章 图形的平移与旋转1 图形的平移2 图形的旋转…

解决 @Scope 注解失效问题:深入理解与排查方法

在使用 Spring 框架时&#xff0c;你可能遇到过 Scope 注解失效的情况。这个注解是用来定义 Bean 的作用域的&#xff0c;比如 singleton、prototype、request、session 等。当 Scope 注解失效时&#xff0c;意味着 Bean 的作用域没有被正确地设置&#xff0c;这可能会导致 Bea…

JavaWeb1 Json+BOM+DOM+事件监听

JS对象-Json //Json 字符串转JS对象 var jsObject Json.parse(userStr); //JS对象转JSON字符串 var jsonStr JSON.stringify(jsObject);JS对象-BOM BOM是浏览器对象模型&#xff0c;允许JS与浏览器对话 它包括5个对象&#xff1a;window、document、navigator、screen、hi…

力扣hot100:138. 随机链表的复制(技巧,数据结构)

LeetCode&#xff1a;138. 随机链表的复制 这是一个经典的数据结构题&#xff0c;当做数据结构来学习。 1、哈希映射 需要注意的是&#xff0c;指针也能够当做unordered_map的键值&#xff0c;指针实际上是一个地址值&#xff0c;在unordered_map中&#xff0c;使用指针的实…

VXLAN技术

VXLAN技术 一、VXLAN简介 1、定义 VXLAN&#xff08;Virtual eXtensible Local Area Network&#xff09;&#xff1a;采用MAC in UDP&#xff08;User Datagram Protocol&#xff09;封装方式&#xff0c;是NVO3&#xff08;Network Virtualization over Layer 3&#xff09…

使用 Logback.xml 配置文件输出日志信息

官方链接&#xff1a;Chapter 3: Configurationhttps://logback.qos.ch/manual/configuration.html 配置使用 logback 的方式有很多种&#xff0c;而使用配置文件是较为简单的一种方式&#xff0c;下述就是简单描述一个 logback 配置文件基本的配置项&#xff1a; 由于 logba…

Vuforia AR篇(七)— 二维码识别

目录 前言一、什么是Barcode &#xff1f;二、使用步骤三、点击二维码显示信息四、效果 前言 在数字化时代&#xff0c;条形码和二维码已成为连接现实世界与数字信息的重要桥梁。Vuforia作为领先的AR开发平台&#xff0c;提供了Barcode Scanner功能&#xff0c;使得在Unity中实…

ros常用环境变量

RMW层DDS实现 rti dds export RMW_IMPLEMENTATIONrmw_connextdds //rti dds 或者 RMW_IMPLEMENTATIONrmw_connextdds ros2 run ... export NDDS_QOS_PROFILES/qos.xml //配置qos文件fastdds export RMW_IMPLEMENTATIONrmw_fastrtps_cpp 或者 RMW_IMPLEMENTATIONrmw_fas…

提供全面的网络监控和管理功能,帮助客户实时了解网络状态和优化网络性能

联通IP Transit产品依托中国联通在全球范围内的AS4837/AS10099网络平台&#xff0c;采用BGP对接技术&#xff0c;为客户自有的IP地址段提供全球互联网络穿透服务。通过这一产品&#xff0c;客户可以享受到专属带宽带来的优质访问体验&#xff0c;快速、高效地将网络数据内容接入…

力扣1438.绝对差不超过限制的最长连续子数组

力扣1438.绝对差不超过限制的最长连续子数组 难点&#xff1a;保存数组缩小后的最大最小值 用两个单调队列分别处理最大值和最小值 class Solution {public:int longestSubarray(vector<int>& nums, int limit) {deque<int> quemax,quemin;int n nums.size…

Http和Socks的区别?

HTTP和SOCKS都是用于网络通信的协议&#xff0c;但它们在设计目标和应用场景上有显著的区别。 一、HTTP (HyperText Transfer Protocol) HTTP是用于分布式、协作和超媒体信息系统的应用层协议。主要特点包括&#xff1a; 用途&#xff1a;HTTP主要用于万维网&#xff0c;通过…

json和axion结合

目录 java中使用JSON对象 在pom.xml中导入依赖 使用 public static String toJSONString(Object object)把自定义对象变成JSON对象 json和axios综合案例 使用的过滤器 前端代码 响应和请求都是普通字符串 和 请求时普通字符串&#xff0c;响应是json字符串 响应的数据是…

MySQL换路径(文件夹)

#MySQL作为免费数据库很受欢迎&#xff0c;即使公司没有使用&#xff0c;自己也可以用。它是一个服务&#xff0c;在点击CtrlAltDelete选择任务管理器后&#xff0c;它在服务那个归类里。 经常整理计算机磁盘分类的小伙伴&#xff0c;如果你们安装了MySQL&#xff0c;并且想移…