最新张量补全论文收集【8篇】

目录

1、利用张量子空间先验:增强张量补全的核范数最小化和

2、基于可学习空间光谱变换的张量核范数多维视觉数据恢复

3、用于图像补全的增强型低秩和稀疏 Tucker 分解

4、多模态核心张量分解及其在低秩张量补全中的应用

5、 低秩张量环的噪声张量补全

6、 视觉数据鲁棒张量补全的粗到精两阶段方法

7、 张量-序列格式下三阶张量补全的秩估计

8、具有缺失条目的平滑非负张量因子分解的新惩罚准则


1、利用张量子空间先验:增强张量补全的核范数最小化和

Ge, L., Jiang, X., Chen, L., Liu, X., & Haardt, M. (2024). Leveraging Tensor Subspace Prior: Enhanced Sum of Nuclear Norm Minimization for Tensor Completion. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7655-7659). Seoul, Korea, Republic of. https://doi.org/10.1109/ICASSP48485.2024.10447654.

摘要:张量补全在信号处理、计算机视觉和生物医学工程中引起了越来越多的关注。利用核范数最小化,张量补全问题可以转化为凸规划,并具有矩阵补全的性质。低秩性质已被广泛应用于张量/矩阵补全。然而,先验子空间信息也可以被利用,但在现有的公式中被忽略,并没有充分发挥其作用。在本文中,我们提出了一个新的框架利用张量子空间先验核范数(SNN)最小化和,它支持一系列张量分解。利用自先验(SP)/非自先验(NSP)的知识,进一步设计一种基于交替方向乘子法(ADMM)的高效算法,可以提高张量补全的性能。大量的数值实验验证了该方法的优越性。

Tucker、TT、TR和FCTN分解的张量网络表示

2、基于可学习空间光谱变换的张量核范数多维视觉数据恢复

Liu, S., Leng, J., Zhao, X.-L., Zeng, H., Wang, Y., & Yang, J.-H. (2024). Learnable Spatial-Spectral Transform-Based Tensor Nuclear Norm for Multi-Dimensional Visual Data Recovery. IEEE Transactions on Circuits and Systems for Video Technology, 34(5), 3633-3646. https://doi.org/10.1109/TCSVT.2023.3316279.

摘要:近年来,基于变换的张量核范数(TNN)方法作为一种强大的多维视觉数据(彩色图像、视频和多光谱图像等)恢复工具受到越来越多的关注。特别是基于冗余变换的TNN获得了满意的恢复效果,其中沿谱模式的冗余变换可以显著增强张量的低秩性。但是,由于冗余变换导致的计算开销较大。本文提出了一种可学习的基于空间-光谱变换的多维视觉数据恢复TNN模型,该模型不仅具有较好的低秩能力,而且可以设计伴随的快速算法。更具体地说,我们首先通过沿空间模式的可学习半正交变换将大尺度原始张量投影到小尺度本征张量。其中,半正交变换作为关键的构建块,可以提高空间低秩性,求解小尺度问题,为设计快速算法铺平道路。其次,为了进一步提高低秩性,我们对小尺度本征张量进行沿谱模式的可学习冗余变换。为了解决所提出的模型,我们采用了一种有效的基于邻域交替最小化的算法,该算法具有理论的收敛性保证。在真实世界数据(彩色图像、视频和多光谱图像)上的大量实验结果表明,所提出的方法在评估指标和运行时间方面优于最先进的对比方法。

DTNN和LS2T2NN的框架

 (a)沿空间模态对Xt进行可学习的半正交变换,得到小尺度张量et。(b)利用可学习的冗余变换,沿谱模式对E - t进行谱编码。(c)对Zt的每个额片进行低秩表示操作。(d)利用可学习的冗余变换,沿谱模式对Zt+1进行谱解码。(e)利用可学习的半正交变换,沿空间模式对et +1进行空间解码。

3、用于图像补全的增强型低秩和稀疏 Tucker 分解

Gong, W., Huang, Z., & Yan, L. (2024). Enhanced Low-Rank and Sparse Tucker Decomposition For Image Completion. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2425-2429). Seoul, Korea, Republic of. https://doi.org/10.1109/ICASSP48485.2024.10448445.

摘要:低秩张量测量的最新进展解决了张量补全的挑战,特别是在图像补全(IC)任务中。然而,目前的低秩通常是基于展开矩阵的秩和。此外,它忽略了局部相似度或对图像数据进行了过度平滑正则化,这在高级损坏恢复中可能是不可靠的。本文提出了一种新的基于塔克的模型来考虑成像中的全局和局部信息。其中,利用加权因子矩阵秩和核心张量稀疏度对全局低秩进行编码,利用图正则化对局部相似度进行表征。本文提出了一种易于求解子问题的线性化交替方向法(LADM)。大量的实验证明了我们的建议的准确性,即使在极端情况下,如99%的缺失场景。

一些现有的基于塔克的方法利用不同的先验
E-LRSTD模型的视觉显示

4、多模态核心张量分解及其在低秩张量补全中的应用

 Zeng, H., Xue, J., Luong, H. Q., & Philips, W. (2023). Multimodal Core Tensor Factorization and its Applications to Low-Rank Tensor Completion. IEEE Transactions on Multimedia, 25, 7010-7024. https://doi.org/10.1109/TMM.2022.3216746.

摘要:低秩张量补全在计算机视觉和机器学习中有着广泛的应用。本文提出了一种新的多模态核心张量分解(MCTF)方法,该方法结合了张量低秩测度及其较好的非凸松弛形式(NC-MCTF)。所提出的模型对Tucker和T-SVD提供的一般张量的低秩洞察进行编码,因此有望同时在多个方向上对光谱低秩进行建模,并基于少量观测条目准确地恢复本征低秩结构的数据。在此基础上,研究了MCTF和NC-MCTF正则化最小化问题,设计了一种有效的块连续上界最小化(BSUM)算法。从理论上证明了所提模型生成的迭代收敛于坐标极小集。这个高效的求解器可以将MCTF扩展到各种任务,如张量补全。包括高光谱图像、视频和MRI完成的一系列实验证实了该方法的优越性能。

Y:原始视频张量Suzie,共150帧,每帧的空间大小为144 × 176。(a)为Gn的n型奇异值曲线。(b) MCTF沿其三个模态分解得到的因子张量Gn和因子矩阵Xn。(c)因子矩阵Xn的奇异值曲线。
(a) 200*200*80的真实HSI;(b)沿三个张量模展开的矩阵奇异值曲线。(c)视频“Suzie”数据集TSVD分解(TNN)张量补全性能。当观测值稀疏时,预测精度严重退化。
三维张量的MCTF张量分解示意图,在所有方向上同时鼓励低秩结构
所提出的基于MCTF的低秩度量的说明,它将底层张量建模为张量和矩阵的三种低秩组合的混合物
两段由TMac, TNN和NCMCTF恢复的视频“Suzie”。第一行采样率为20%,第二行采样率为5%
提出的张量低秩测度的可视化显示

5、 低秩张量环的噪声张量补全

Qiu, Y., Zhou, G., Zhao, Q., & Xie, S. (2024). Noisy Tensor Completion via Low-Rank Tensor Ring. IEEE Transactions on Neural Networks and Learning Systems, 35(1), 1127-1141. https://doi.org/10.1109/TNNLS.2022.3181378

摘要:张量补全是不完整数据分析的基本工具,其目标是从部分观测中预测缺失的条目。然而,现有的方法往往会明确或隐含地假设观测条目是无噪声的,从而为准确恢复缺失条目提供理论上的保证,这在实践中具有很大的局限性。

为了弥补这一缺陷,本文提出了一种新的噪声张量补全模型,弥补了现有研究在处理高阶和噪声观测退化方面的不足。具体而言,采用张量环核范数(TRNN)和最小二乘估计量分别对底层张量和观测项进行正则化。此外,给出了估计误差的非渐近上界来描述所提估计器的统计性能。为了解决具有收敛保证的优化问题,提出了两种有效的算法,其中一种算法专门针对大规模张量的优化问题,在异构张量分解框架中,将原始张量的TRNN的最小化等价地替换为更小的TRNN的最小化。在合成数据和实际数据上的实验结果表明,与现有的张量补全模型相比,该模型在恢复有噪声的不完全张量数据方面是有效的。

TR分解和不同展开矩阵的说明。(a) TR分解的图形表示;(b)在一个八阶张量T R3×3×3×3×3×3×3×3上不同展开矩阵的比较,其中展开矩阵的秩分别与其Tucker、TT和TR秩相关
在四种视频序列上进行视频补全的性能比较:RE, PSNR和运行时间

6、 视觉数据鲁棒张量补全的粗到精两阶段方法

He, Y., & Atia, G. K. (2024). Coarse to Fine Two-Stage Approach to Robust Tensor Completion of Visual Data. IEEE Transactions on Cybernetics, 54(1), 136-149. https://doi.org/10.1109/TCYB.2022.3198932

摘要:张量补全是从部分观察到的数据中估计高阶数据的缺失值的问题。由于普遍存在的异常值导致的数据损坏对传统的张量补全算法提出了重大挑战,这促使了鲁棒算法的发展,以减轻异常值的影响。然而,现有的鲁棒方法大多假设异常值是稀疏的,而这在实践中可能并不成立。在本文中,我们开发了一种两阶段的鲁棒张量补全方法,以应对具有大量粗糙污染的视觉数据的张量补全问题。提出了一种新的从粗到细的框架,该框架使用全局粗略补全结果来指导局部补丁的细化过程。为了有效减轻大量异常值对张量恢复的影响,我们开发了一种基于M估计的新鲁棒张量环恢复方法,该方法可以自适应地识别异常值并在优化中减轻其负面影响。实验结果表明,所提出的方法在张量补全方面的性能优于最新的鲁棒算法。

两阶段粗到精的鲁棒张量补全框架。在粗糙阶段(蓝色区域),对整个图像应用鲁棒张量补全算法。在精细阶段(黄色区域),对于分割图像中的每个patch,在全局补全结果的指导下,对patch抖动得到的对应patch张量进行局部patch细化。

7、 张量-序列格式下三阶张量补全的秩估计

Vermeylen, C., Olikier, G., Absil, P.-A., & Van Barel, M. (2023). Rank Estimation for Third-Order Tensor Completion in the Tensor-Train Format. In 2023 31st European Signal Processing Conference (EUSIPCO) (pp. 965-969). Helsinki, Finland. https://doi.org/10.23919/EUSIPCO58844.2023.10289827

摘要:对于有界张量列秩的三阶张量变化张量补全问题,提出了一种求秩上界的充分值的数值方法。该方法的灵感来自于Kutschan(2018)导出的切锥参数化。给出了一个相关的低秩张量逼近问题上界的充分性证明,并定义了一个估计秩,将结果推广到低秩张量补全问题。在合成数据上的实验表明,该方法具有较好的鲁棒性,如对数据噪声的抑制能力。

8、具有缺失条目的平滑非负张量因子分解的新惩罚准则

Durand, A., Roueff, F., Jicquel, J.-M., & Paul, N. (2024). New Penalized Criteria for Smooth Non-Negative Tensor Factorization With Missing Entries. IEEE Transactions on Signal Processing, 72, 2233-2243. https://doi.org/10.1109/TSP.2024.3392357

摘要:张量分解模型在化学计量学、心理计量学、计算机视觉、通信网络等领域有着广泛的应用。现实生活中的数据收集经常会出现错误,导致数据丢失。在这里,我们的重点是理解这个问题应该如何处理非负张量分解。我们研究了在缺少某些项的情况下用于非负张量分解的几个准则。特别地,我们展示了平滑惩罚如何补偿缺失值的存在,以确保最优的存在。这导致我们提出了新的准则与有效的数值优化算法。数值实验证明了我们的观点。

SSIM随α的演化。行表示三个图像,列表示掩码的类型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/847118.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

三十四、openlayers官网示例Dynamic clusters解析——动态的聚合图层

官网demo地址: https://openlayers.org/en/latest/examples/clusters-dynamic.html 这篇绘制了多个聚合图层。 先初始化地图 ,设置了地图视角的边界extent,限制了地图缩放的范围 initMap() {const raster new TileLayer({source: new XYZ…

JAVA流程控制break,continue,goto

1.break在任何循环语句的主体成分,均可用break控制循环的流程。break用于强行退出循环,不执行循环中剩余的语句。(break语句也在switch语句中使用) 如图:break语句强行退出循环,结果输出1~30便结束&#xf…

两数之和-第13届蓝桥杯选拔赛Python真题精选

[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第76讲。 两数之和&#xf…

Java面试八股之死锁和活锁的区别

死锁和活锁的区别 基本定义: 死锁(Deadlock):指两个或多个线程互相等待对方释放资源,从而导致所有线程都无法继续执行的状态。每个线程至少持有一个资源,并等待另一个由其他线程持有的资源,形…

初始操作系统

概念: 1.系统资源的管理者:实质控制和管理整个计算机系统的硬件和软件资源,并合理地组织调度计算机地工作和资源的分配 2.向上层提供方便易用的服务:以提供给用户和其他软件方便接口和环境 封装思想:操作系统把一些丑…

阿里云服务器接入百度云防护后显示502原因

最近,发现很多使用了阿里云服务器的网站出现502的情况 经百度云防护技术排查发现阿里云机房对百度云防护的IP进行了拦截,原因近期可能是百度云防护的IP请求过于频繁,导致阿里云机房策略把百度云的IP当成了攻击IP。 解决办法是提交工单让阿里…

第三方模块的下载与安装

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 在进行Python程序开发时,除了可以使用Python内置的标准模块外,还有很多第三方模块可以被我们所使用。对于这些第三方模块&…

5.31——进军MYSQL

目录 简略版: 详解版: 一. myaql概述: 数据库: 数据库管理系统: SQL: 二. masql的安装: 启动与停止: 1. MYSQL提供的命令行 2. windows提供的命令行工具 三.数据模型 …

Claude 3可使用第三方API,实现业务流程自动化

5月31日,著名大模型平台Anthropic宣布,Claude3模型可以使用第三方API和工具。 这也就是说,用户通过文本提问的方式就能让Claude自动执行多种任务,例如,从发票中自动提取姓名、日期、金额等,该功能对于开发…

DVWA靶场搭建:Apache、MySQL、PHP、DVWA

最近为了能够较为真实地学习Web渗透的各种技术,就想着自己搭建一个专门用于学习的Web演练平台--DVWA“靶场”。 DVWA可以进行暴力(破解)、命令行注入、跨站请求伪造、文件包含、文件上传、不安全的验证码、SQL注入、SQL盲注、弱会话ID、XSS漏…

批量归一化(BN)和层归一化(LN)的区别

批量归一化(Batch Normalization, BN)和层归一化(Layer Normalization, LN)是深度学习中常用的两种归一化技术,它们主要用于解决训练过程中的内部协变量偏移问题,加速模型收敛和提高稳定性。 1. 为什么需要…

基于Java的工程项目管理系统的功能与技术优势 工程管理系统源码

在当今的工程领域,项目管理的高效协同和信息共享是提升工作效率、降低成本的关键。本文将向您介绍一款基于Java技术构建的工程项目管理系统,该系统采用前后端分离的先进技术框架,功能全面,能够满足不同角色的需求,从项…

如何制作一本温馨的电子相册呢?

随着科技的不断发展,电子相册已经成为了一种流行的方式来记录和分享我们的生活。一张张照片,一段段视频,都能让我们回忆起那些温馨的时光。那么,如何制作一本温馨的电子相册呢? 首先,选择一款合适的电子相册…

Vuforia AR篇(五)— 地平面检测

目录 前言一、什么是地平面识别?二、使用步骤三、示例代码四、效果五、总结 前言 在增强现实(AR)应用程序的开发中,地平面识别是一项关键技术,它允许虚拟对象与现实世界的地面进行互动。Vuforia 是一个功能强大的 AR …

【Linux】深入理解进程的优先级(Linux 2.6版本O(1)调度算法)

进程的优先级 【前置知识】一、进程的优先级(一)为什么要有优先级?(二)进程的优先级的范围 二、操作系统是如何实现进程的优先级?(Linux内核2.6版本O(1)调度算法) 【前置知识】 首先我们要了解…

FFmpeg 中 Filters 使用文档介绍

描述 这份文档描述了由libavfilter库提供的过滤器Filters、源sources和接收器sinks。 滤镜介绍 FFmpeg通过libavfilter库启用过滤功能。在libavfilter中,一个过滤器可以有多个输入和多个输出。为了说明可能的类型,我们考虑以下过滤器图: 这个过滤器图将输入流分成两个流,然…

补上缺失的一环----一种数据库系统主动对外推送表的增删改实时变动数据的实践

在实践中,一些应用程序或模块需要实时获取某些数据库表的增删改变动数据。 对此需求,常见的方案有: 1、应用程序通过轮循查询数据库方式获取数据库表的增删改变动数据. 2、应用程序在把数据写入数据库表之前,通过事件方式向外通知数据库表的增…

OZON的选品工具,OZON选品工具推荐

在电商领域,选品一直是决定卖家成功与否的关键因素之一。随着OZON平台的崛起,越来越多的卖家开始关注并寻求有效的选品工具,以帮助他们在这个竞争激烈的市场中脱颖而出。本文将详细介绍OZON的选品工具,并推荐几款实用的辅助工具&a…

redis之发布与订阅

华子目录 什么是发布与订阅?常用命令psubscribe pattern1 [pattern2...]subscribe channel1 [channel2...]publish channel messagepunsubscribe pattern1 [pattern2...]unsubscribe [channel1 [channel2...]]pubsub subcommand argument1 [argument2...] 示例1示例…

ESP使用巴法云远程OTA(VScode + Platform io)

ESP使用巴法云远程OTA(Platform) 什么是OTA: OTA(Over-the-AirTechnology)即空中下载技术,是通过移动通信的空中接口实现对移动终端设备及SIM卡数据进行远程管理的技术。OTA升级是物联网(IOT&am…