Graph Composer全面介绍

本文全面介绍了Graph Composer的功能、安装、使用方法以及高级特性,旨在帮助读者从基础到高级全面掌握Graph Composer的使用,并有效应用于智能视频分析和AI应用开发。

文章目录

  • Graph Composer概述
    • Graph Composer的基本功能和优势
    • Graph Composer与NVIDIA DeepStream的集成
    • Graph Composer的主要特点和应用场景
  • 安装与配置
    • 安装DeepStream和Graph Composer
    • 配置Graph Composer环境
    • 解决安装和配置中的常见问题
  • 基础操作指南
    • Graph Composer的用户界面介绍
    • 创建和编辑图表
    • 图表元素的添加与编辑
    • 数据导入与处理
  • 高级功能与定制
    • Graph Composer的高级功能
      • 1. 动态数据绑定
      • 2. 条件逻辑和分支
      • 3. 自定义脚本和插件
    • 自定义图表样式和集成外部数据源
      • 1. 图表样式自定义
      • 2. 集成外部数据源
    • 性能优化和调试技巧
      • 1. 性能优化
      • 2. 调试技巧
  • 实际应用案例
    • 使用Graph Composer开发智能视频分析应用程序
      • 步骤1:定义需求
      • 步骤2:创建图表
      • 步骤3:配置组件
      • 步骤4:连接组件
      • 步骤5:测试和调试
    • 部署AI应用程序到容器和云平台
      • 步骤1:容器化应用程序
      • 步骤2:上传到云平台
      • 步骤3:配置云服务
      • 步骤4:部署和测试
    • 案例研究:从零到部署的完整流程
      • 案例背景
      • 开发阶段
      • 部署阶段
  • 资源与社区支持
    • 获取更多信息的途径,如GTC talk和网络研讨会
    • 参与社区和获取支持的方法
    • 推荐的进一步学习资源

Graph Composer概述

Graph Composer的基本功能和优势

Graph Composer是一款专为NVIDIA DeepStream平台设计的工具,它通过提供一个直观的图形界面,简化了智能视频分析和AI应用的开发过程。其基本功能和优势包括:

  • 图形化界面:Graph Composer允许用户通过拖放组件的方式来设计和部署复杂的AI流程,无需深入编程知识。
  • 组件库:内置丰富的预构建组件,涵盖了数据输入、处理和输出的各个环节,用户可以根据需求选择和配置这些组件。
  • 实时预览和调试:在设计过程中,用户可以实时预览图表的运行效果,并进行必要的调试,这大大加快了开发和测试的周期。
  • 集成DeepStream:Graph Composer与NVIDIA DeepStream紧密集成,可以直接利用DeepStream的强大功能进行视频分析和处理。
  • 可扩展性:用户可以通过添加自定义组件或脚本来扩展Graph Composer的功能,满足特定的业务需求。

Graph Composer与NVIDIA DeepStream的集成

Graph Composer与NVIDIA DeepStream的集成是其核心优势之一。DeepStream是一个用于构建AI驱动的视频和图像分析应用程序的SDK,而Graph Composer则提供了一个可视化的方式来构建和部署这些应用程序。

  • 无缝集成:Graph Composer可以直接导入DeepStream的配置文件,并将其转换为图形化的流程图,使得DeepStream的配置和管理更加直观和高效。
  • 利用DeepStream功能:通过Graph Composer,开发者可以轻松地利用DeepStream提供的各种功能,如视频解码、图像处理、AI推理等,无需深入了解DeepStream的底层API。
  • 优化性能:Graph Composer允许用户在图形界面中调整DeepStream组件的参数,以优化性能和资源使用,这对于大规模部署尤为重要。

Graph Composer的主要特点和应用场景

Graph Composer的主要特点包括其用户友好的界面、强大的集成能力和高度的可定制性。这些特点使其适用于多种应用场景:

  • 智能视频分析:通过Graph Composer,开发者可以快速构建和部署视频分析应用,如交通监控、安防监控等。
  • AI模型部署:它支持将训练好的AI模型集成到处理流程中,实现从数据输入到模型推理再到结果输出的完整流程。
  • 教育和研究:Graph Composer的直观操作界面也使其成为教育和研究领域的理想工具,帮助学生和研究人员快速理解和实现复杂的AI流程。
  • 企业解决方案:对于企业而言,Graph Composer可以帮助IT团队快速开发和部署定制化的AI解决方案,提高业务效率和创新能力。

总之,Graph Composer是一个功能强大且易于使用的工具,它通过与NVIDIA DeepStream的深度集成,为开发者提供了一个高效、直观的方式来构建和部署智能视频分析和AI应用。

安装与配置

安装DeepStream和Graph Composer

在开始使用Graph Composer之前,首先需要安装DeepStream SDK和Graph Composer工具。以下是安装步骤:

  1. 安装DeepStream SDK

    • 访问NVIDIA官方网站下载DeepStream SDK的最新版本。
    • 根据官方指南进行安装,通常需要运行安装脚本并遵循屏幕上的指示。
    • 确保系统满足DeepStream SDK的硬件和软件要求。
  2. 安装Graph Composer

    • 在安装DeepStream SDK后,Graph Composer通常作为DeepStream的一部分自动安装。
    • 如果没有自动安装,可以从DeepStream的安装目录中找到Graph Composer的安装包,并按照指示进行安装。
  3. 验证安装

    • 安装完成后,通过命令行输入deepstream-app来验证DeepStream是否安装成功。
    • 启动Graph Composer,检查是否能正常打开界面,以验证Graph Composer的安装。

配置Graph Composer环境

配置Graph Composer环境是确保其正常运行的关键步骤。以下是配置环境的步骤:

  1. 设置环境变量

    • 在Linux系统中,需要设置环境变量以确保Graph Composer能够找到DeepStream SDK。
    • 使用命令export GST_PLUGIN_PATH=$GST_PLUGIN_PATH:/path/to/deepstream/lib/gst-plugins/来设置GST_PLUGIN_PATH。
    • 同样,设置export LD_LIBRARY_PATH=/path/to/deepstream/lib:$LD_LIBRARY_PATH来确保库文件的正确加载。
  2. 配置Graph Composer

    • 打开Graph Composer,进入设置或首选项菜单,配置DeepStream SDK的路径。
    • 确保Graph Composer能够访问必要的DeepStream组件和插件。
  3. 测试配置

    • 创建一个简单的图表,添加基本的处理元素,如源和解码器,然后运行图表以测试配置是否正确。

解决安装和配置中的常见问题

在安装和配置过程中可能会遇到一些常见问题,以下是一些解决方法:

  1. 安装失败

    • 确保系统满足DeepStream和Graph Composer的最低要求。
    • 检查网络连接,确保在安装过程中能够访问NVIDIA的服务器。
    • 如果使用的是Linux系统,尝试使用管理员权限运行安装脚本。
  2. 环境变量设置错误

    • 检查环境变量设置是否正确,特别是GST_PLUGIN_PATH和LD_LIBRARY_PATH。
    • 使用echo $VARIABLE_NAME来检查变量是否已正确设置。
  3. Graph Composer无法启动或运行

    • 检查DeepStream SDK是否已正确安装并且是最新版本。
    • 确保Graph Composer的配置指向正确的DeepStream SDK路径。
    • 查看NVIDIA社区论坛或官方文档,寻找可能的解决方案或更新。

通过以上步骤,可以成功安装并配置Graph Composer,为后续的图表创建和应用开发打下坚实的基础。

基础操作指南

Graph Composer的用户界面介绍

Graph Composer提供了一个直观且功能丰富的用户界面,使得用户可以轻松地创建、编辑和管理复杂的图表。用户界面主要分为以下几个部分:

  1. 工具栏:位于界面的顶部,提供了创建新图表、打开现有图表、保存和导出图表等基本操作的快捷按钮。
  2. 图表编辑区:这是用户界面中最大的区域,用于显示和编辑当前的图表。用户可以在这里添加、移动和连接各种图表元素。
  3. 元素库:位于界面的左侧,列出了所有可用的图表元素,如数据源、处理节点、输出节点等。用户可以从中选择并拖拽到图表编辑区。
  4. 属性面板:位于界面的右侧,显示当前选中的图表元素的详细属性。用户可以在这里调整元素的配置,如数据源的类型、处理节点的算法参数等。

创建和编辑图表

创建一个新的图表是一个简单的过程:

  1. 打开Graph Composer,点击工具栏上的“新建图表”按钮。
  2. 从元素库中选择所需的元素,拖拽到图表编辑区。
  3. 使用鼠标连接这些元素,形成数据流的逻辑路径。
  4. 在属性面板中配置每个元素的详细参数。

编辑图表时,用户可以:

  • 通过拖拽来移动图表元素。
  • 通过点击元素并按下删除键来移除不需要的元素。
  • 通过双击元素或点击属性面板中的编辑按钮来修改元素的配置。

图表元素的添加与编辑

Graph Composer支持多种类型的图表元素,包括但不限于:

  • 数据源:用于导入外部数据,如视频流、图像文件等。
  • 处理节点:执行特定的数据处理任务,如图像识别、视频分析等。
  • 输出节点:将处理后的数据输出到外部系统或存储。

添加元素时,只需从元素库中选择并拖拽到图表编辑区。编辑元素时,可以在属性面板中调整其配置,例如,对于数据源,可以设置文件路径或流地址;对于处理节点,可以配置算法参数和运行时选项。

数据导入与处理

Graph Composer支持多种数据导入方式:

  • 文件导入:用户可以选择本地文件或网络文件作为数据源。
  • 实时数据流:支持从摄像头、网络摄像头等实时数据源导入数据。

数据处理通常涉及以下步骤:

  1. 选择或配置数据源。
  2. 添加处理节点,并配置其算法参数。
  3. 连接数据源和处理节点,确保数据流正确传递。
  4. 添加输出节点,将处理结果导出到指定位置。

通过这些基础操作,用户可以有效地使用Graph Composer来构建和优化复杂的图表,以支持各种智能视频分析和AI应用开发的需求。

高级功能与定制

Graph Composer的高级功能

Graph Composer不仅是一个基础的图表编辑工具,它还提供了一系列高级功能,以满足更复杂的应用需求。这些高级功能包括但不限于:

1. 动态数据绑定

Graph Composer支持动态数据绑定,允许用户实时地将外部数据源与图表元素关联起来。这意味着用户可以根据实时数据的变化和需求,动态调整图表的显示内容和数据处理逻辑。

2. 条件逻辑和分支

在处理复杂的数据流程时,条件逻辑是不可或缺的。Graph Composer允许用户在图表中添加条件分支,根据不同的数据条件执行不同的操作或显示不同的数据路径,从而使数据处理更加灵活和精确。

3. 自定义脚本和插件

为了进一步扩展功能,Graph Composer提供了自定义脚本和插件的支持。用户可以通过编写脚本或开发插件来添加特定的功能,如自定义数据处理算法或集成特定的数据源,这极大地增强了Graph Composer的灵活性和可扩展性。

自定义图表样式和集成外部数据源

1. 图表样式自定义

Graph Composer允许用户自定义图表的样式,包括颜色、字体、布局等。这不仅使得图表更加美观,也提高了图表的可读性和专业性。用户可以通过简单的拖放和配置来调整图表样式,使其更符合特定的展示需求或品牌风格。

2. 集成外部数据源

集成外部数据源是Graph Composer的另一个强大功能。用户可以连接到各种数据源,如数据库、API、文件等,并将这些数据直接导入到图表中。这大大扩展了Graph Composer的应用范围,使其能够处理更加复杂和多样化的数据。

性能优化和调试技巧

1. 性能优化

为了确保图表的流畅运行和高效处理,Graph Composer提供了多种性能优化工具和技巧。例如,用户可以通过优化数据处理流程、减少不必要的计算和内存使用来提高性能。此外,合理配置资源和使用高效的算法也是提升性能的关键。

2. 调试技巧

调试是开发过程中非常重要的一部分。Graph Composer提供了详细的调试工具,帮助用户快速定位和解决问题。这些工具包括但不限于:

  • 实时数据监控:允许用户实时查看数据流和处理结果。
  • 错误日志:记录并显示图表运行时的错误信息。
  • 逐步执行:允许用户逐步执行图表中的每个节点,以便更细致地检查数据处理过程。

通过这些高级功能和定制选项,Graph Composer能够满足从基础到高级用户的各种需求,无论是简单的数据展示还是复杂的数据分析和处理。

实际应用案例

使用Graph Composer开发智能视频分析应用程序

Graph Composer是一个强大的工具,它通过图形用户界面简化了AI应用程序的开发过程,特别是在智能视频分析领域。以下是使用Graph Composer开发智能视频分析应用程序的步骤:

步骤1:定义需求

首先,明确应用程序的需求,例如视频流的处理、对象检测、行为识别等。

步骤2:创建图表

打开Graph Composer,创建一个新的图表。在图表中,可以添加各种组件,如视频源、解码器、AI推理引擎、后处理工具和输出组件。

步骤3:配置组件

为每个组件配置适当的参数。例如,为AI推理引擎选择合适的模型,设置解码器的视频源参数等。

步骤4:连接组件

使用Graph Composer的拖放功能,将组件连接起来,形成数据流。确保数据从视频源正确流向AI推理引擎,并最终输出到指定的目标。

步骤5:测试和调试

运行图表,观察输出结果,并根据需要调整组件的配置或连接方式,直到满足需求。

部署AI应用程序到容器和云平台

一旦智能视频分析应用程序开发完成,下一步是将其部署到容器和云平台,以便于管理和扩展。

步骤1:容器化应用程序

使用Graph Composer的容器构建功能,将应用程序及其依赖项打包成一个Docker容器。这可以通过选择适当的配置文件和平台配置文件来完成。

步骤2:上传到云平台

将构建好的Docker容器上传到云平台,如AWS、Azure或Google Cloud。这通常涉及创建一个新的容器服务实例,并上传容器镜像。

步骤3:配置云服务

在云平台上配置服务,包括设置网络、存储和计算资源。确保服务能够处理预期的视频流负载。

步骤4:部署和测试

启动云服务,部署应用程序,并进行测试以确保一切按预期运行。

案例研究:从零到部署的完整流程

以下是一个案例研究,展示了如何从零开始使用Graph Composer开发一个智能视频分析应用程序,并将其部署到云平台。

案例背景

假设我们需要开发一个应用程序,用于监控停车场,自动检测非法停车行为。

开发阶段

  1. 需求分析:确定需要检测的行为和视频源。
  2. 图表设计:在Graph Composer中设计图表,包括视频源、AI推理引擎(用于车辆检测)、规则引擎(用于判断非法停车)和报警系统。
  3. 组件配置:为每个组件配置参数,如选择合适的车辆检测模型。
  4. 连接和测试:连接组件,进行初步测试和调试。

部署阶段

  1. 容器化:使用Graph Composer的容器构建功能,将应用程序打包成Docker容器。
  2. 云平台配置:在云平台上创建服务实例,上传容器镜像,并配置必要的网络和存储资源。
  3. 部署和监控:启动服务,部署应用程序,并设置监控和报警系统以实时响应非法停车事件。

通过这个案例研究,我们可以看到Graph Composer如何帮助简化从开发到部署的整个流程,使得智能视频分析应用程序的开发和部署变得更加高效和可靠。

资源与社区支持

获取更多信息的途径,如GTC talk和网络研讨会

为了深入了解Graph Composer及其在智能视频分析和AI应用开发中的应用,参与相关的技术会议和网络研讨会是一个极佳的选择。NVIDIA的GTC(GPU Technology Conference)是一个全球性的技术会议,专注于AI、深度学习、图形处理等领域。在GTC上,NVIDIA经常发布关于Graph Composer的最新动态、案例研究和最佳实践。

  • GTC Talk: 在GTC上,NVIDIA会举办多个关于Graph Composer的演讲,这些演讲通常由NVIDIA的工程师或行业专家进行,内容涵盖Graph Composer的最新功能、实际应用案例和未来发展方向。
  • 网络研讨会: NVIDIA和其合作伙伴会定期举办网络研讨会,这些研讨会通常更侧重于实际操作和案例分享,参与者可以直接与讲者互动,提问和获取实时反馈。

参与社区和获取支持的方法

Graph Composer的社区支持是学习和解决问题的重要资源。以下是参与社区和获取支持的几种方式:

  • NVIDIA Developer Forums: 这是NVIDIA官方的开发者论坛,用户可以在这里提问、分享经验和获取帮助。论坛上有专门的Graph Composer板块,用户可以在这里找到关于Graph Composer的最新讨论和解决方案。
  • GitHub: Graph Composer的源代码托管在GitHub上,用户可以在这里查看代码、提交问题和贡献代码。GitHub也是获取最新更新和修复的重要渠道。
  • Stack Overflow: 在Stack Overflow上,有许多关于Graph Composer的问题和答案。用户可以通过搜索相关问题或直接提问来获取帮助。

推荐的进一步学习资源

为了更深入地学习和掌握Graph Composer,以下是一些推荐的学习资源:

  • 官方文档: NVIDIA提供了详细的Graph Composer官方文档,包括安装指南、用户手册和API参考。这些文档是学习和使用Graph Composer的基础。
  • 在线课程: 一些在线教育平台如Coursera、Udemy等提供了关于AI和机器学习的课程,其中可能包含使用Graph Composer的案例和实践。
  • 书籍: 关于AI和机器学习的书籍中,有些会涉及Graph Composer的使用。例如,《Deep Learning for Computer Vision With Python》中就包含了使用Graph Composer的案例。
  • 实践项目: 实际操作是学习Graph Composer的最佳方式。用户可以通过参与开源项目或自己创建项目来实践Graph Composer的使用。

通过这些资源和社区的支持,用户可以更有效地学习和应用Graph Composer,从而在智能视频分析和AI应用开发领域取得更大的进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/844270.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

亮相CCIG2024,合合信息文档解析技术破解大模型语料“饥荒”难题

近日,2024中国图象图形大会在古都西安盛大开幕。本届大会由中国图象图形学学会主办,空军军医大学、西安交通大学、西北工业大学承办,通过二十多场论坛、百余项成果,集中展示了生成式人工智能、大模型、机器学习、类脑计算等多个图…

SQL问题的常用信息收集命令及解决思路 |OceanBase应用实践

面对SQL问题,大家的常用的分析思路是: 一、问题是否源于SQL本身?是的话需进行SQL调优。 二、SQL语句本身无误,但执行效果并未达到我们的预期效果。 检查当前的服务器负载状况,例如CPU利用率、内存占用、IO读写等关键…

[蓝桥杯 2021 省 AB2] 负载均衡

一.题目 题目描述 有 n 台计算机,第 i 台计算机的运算能力为 v i v_i vi​。 有一系列的任务被指派到各个计算机上,第 i 个任务在 a i a_i ai​ 时刻分配,指定计算机编号为 b i b_i bi​,耗时为 c i c_i ci​ 且算力消耗为…

敏感数据的授权和传输加密解决方案

需求背景:解决敏感数据的访问授权和安全传输。 KSP密钥管理系统结合USB Key实现CA证书签发的过程可以大致分为以下几个步骤: 1. 生成密钥对: 用户首先使用USB Key生成一对密钥,包括公钥和私钥。公钥用于加密和验证数字签名&…

教程来咯!如何在Windows10中设置代理IP?

很多用户在使用win10系统的时候,网络设置都是默认的,一般情况下代理服务器都是关闭的状态,而在一些特殊情况下,需要设置代理地址启动功能使用,有不少的用户不知道应该怎么进行设置添加,接下来就和各位用户们…

ansible 常用运维命令

文件传送 ## 传送文件 ansible all -m copy -a "src/tmp/aa.txt dest/tmp/aa.txt" -k## 文件夹传送 - hosts: alltasks:- name: Copy project files and delete extra filescopy:src: /path/to/your/project/dest: /opt/myappremote_src: yesstate: sync ansibe…

element plus 去掉select选择框的边框,并修改右侧图标

1.去掉选择框边框 ::v-deep .el-select__wrapper{ box-shadow: none; } ::v-deep .is-hovering{ box-shadow: none !important; }2.修改选择框右侧图标 新建CaretBottom.vue文件内容&#xff1a; <template><el-icon><CaretBottom /></el-icon> <…

逍遥散人的“痛婚”,让《光夜》玩家悄悄破防了

网红博主的一场求婚&#xff0c;让《光与夜之恋》玩家破防了。 知名游戏博主逍遥散人发微博公布求婚成功&#xff0c;本来应该是一件喜事&#xff0c;但却因为求婚场景布满了《光与夜之恋》男主角之一陆沉的谷子&#xff08;周边&#xff09;&#xff0c;遭到了“6推”&#x…

AI知识库和Agent简介及实现

AI知识库和Agent简介及实现 引言 随着人工智能的发展&#xff0c;大规模预训练模型&#xff08;Large Pre-trained Models&#xff0c;简称大模型&#xff09;成为了AI领域的重要研究方向。大模型通过大量的数据训练&#xff0c;能够在各种任务中展现出强大的性能。本文将重点…

深入解析多维数组与主对角线元素之和

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言&#xff1a;多维数组的奥秘 二、多维数组的基本概念 1. 定义与创建 2. 维度与形…

Downie 4 for Mac:视频下载的新选择

对于Mac用户来说&#xff0c;想要轻松下载网上的视频内容&#xff0c;Downie 4无疑是一个绝佳的选择。这款专为Mac打造的视频下载工具&#xff0c;凭借其强大的功能和简洁的操作界面&#xff0c;让视频下载变得轻松又高效。 Downie 4支持从众多网站下载视频&#xff0c;包括各…

秋招突击——算法——模板题——区间DP(1)——加分二叉树

文章目录 题目描述思路分析实现代码分析总结 题目描述 思路分析 实现代码 不过我的代码写的真的不够简洁&#xff0c;逻辑不够清晰&#xff0c;后续多练练吧。 // 组合数问题 #include <iostream> #include <algorithm>using namespace std;const int N 35; int…

FreeSwitch视频会议同时支持内网和外网接入

我们在使用freeswitch进行视频会议时&#xff0c;之前所有的用户都是通过外网的方式接入&#xff0c;因为fs给其返回的sdp协议内容里&#xff0c;只需要fs配置的外网IP就可以了&#xff1b;最近由于引入新的业务需要有其他内网的服务器也可以直接接入fs的视频会议房间&#xff…

v4l2抓取rv1126图像

0.准备工作 本文是基于正点原子的rv1126开发板使用mx415摄像头对不同节点的图像进行抓取 1.数据流向 图1 mx415采集到的数据为原始的拜尔格式&#xff08;也就是raw格式&#xff09;&#xff0c;我们需要通过isp进行图像的调节才符合视觉&#xff0c;其中isp和ispp是两个处理的…

IT人的拖延——没兴趣又必须做怎么办?

人在职场,难免会被安排一些“不感兴趣”或者“觉得做了没什么意义或成就感”的事情,但是这些事情又被安排到自己身上不得不做了,于是人就难免有了拖延的迹象。这种拖延是“内在激励不足”导致的,因为从内心就觉得这个事情没什么挑战感,自己根本不感兴趣,或者就是重复的工…

异构图的连接预测三

异构图的连接预测三 总结&#xff1a; 做完了异构图的连接预测&#xff0c;我的疑虑还是挺多呢。 问题一&#xff1a; 为啥要使用’user’:self.user_emb(data[‘user’].node_id),生成用户的嵌入向量呢&#xff1f; 答&#xff1a;因为要使用到用户节点的特征&#xff0c;就是…

java中 stream()、parallelStream() 的区别对比,forEach()、forEachOrdered() 的区别对比

一、stream()、parallelStream()区别 1、数据准备 List<String> list = ListUtil.toList("2", "1", "3", "4", "5"); 2、stream() 示例 list.stream().forEach(item -> {System.out.println("stream.forEac…

zynq PS端 GPIO

记录一下PS端 GPIO 1. GPIO 简介 ZYNQ PS 中包含一组丰富的外设&#xff0c;用于和外部设备进行通信。ZYNQ 的 IO 包括对外连接的 GPIO 和内部 PS 与 PL 通信的 AXIO。其中对外的 GPIO 又分为两种&#xff1a;MIO 和 EMIO。 MIO 和 EMIO 只是 GPIO 信号的两种接口&#xff0c…

htop安装不了怎么解决

&#x1f31f;&#x1f30c; 欢迎来到知识与创意的殿堂 — 远见阁小民的世界&#xff01;&#x1f680; &#x1f31f;&#x1f9ed; 在这里&#xff0c;我们一起探索技术的奥秘&#xff0c;一起在知识的海洋中遨游。 &#x1f31f;&#x1f9ed; 在这里&#xff0c;每个错误都…

从零到一建设数据中台 - 数据可视化

从零到一建设数据中台(八)- 数据可视化 一、数据可视化大屏 数据可视化是借助于图形化手段,清晰有效地传达与沟通信息。 将一些业务的关键指标通过数据可视化的方式展示到一块或多块LED大屏上,以大屏为主要展示载体的数据可视化设计。 在数据可视化大屏构建过程中,为了…