【HCIP学习】RSTP和MSTP

一、RSTP(Rapid Spanning Tree Protocol,快速生成树)

1、背景:RSTP从STP发展而来,具备STP的所有功能,可以兼容stp运行

2、RSTP与STP不同点

(1)减少端口状态

STP:disabled\blocking\listening\learning\forwarding

RSTP:

discarding:不发送配置BPDU,不进行MAC地址学习,不收发数据

learning:发送配置BPDU,进行MAC地址学习,不收发数据

forwarding:发送配置BPDU,进行MAC地址学习,收发数据

(2)增加端口角色

STP:指定端口、根端口、阻塞端口

RSTP:

根端口:

指定端口:

Alternate端口:替代端口,根端口的备份

Backup端口:备份端口,指定端口的备份

总结:有替代端口后,就算网络拓扑发生变化,也不会发生重新选举STP的情况,白白浪费30秒

(3)BPDU格式不同

RSTP中:

协议版本ID变为2;

BPDU type变为2;

使用了Flag字段的全部8位,而STP只使用了0号和7号两位;

增加version  1 length字段;(为了兼容STP)

(4)BPDU处理方式不同

每台交换机都能从指定端口发出RST BPDU,发送周期为hello time。不需要等待来自根桥的RST BPDU;

RST BPDU老化时间(max age)为3个连续的hello time时长;

阻塞状态收到低优先级RST BPDU的处理:会立即做出回应;

分析:当SWB和SWA的链路down时,SWB就暂时收不到来自根桥的RST BPDU,此时它认为自己是根桥。会向SWC发送RST BPDU告知自己是根桥,SWC收到后就很惊讶,明明根桥好着呢,然后会向SWB发送RST BPDU告知它,SWA是根桥。这就是阻塞状态收到低优先级RST BPDU的处理:会立即做出回应;

举例:相当于皇帝和太子的关系。有一天太子找不到皇帝了,就给大臣说

太子:皇帝不在了,现在我要登基了,我就是皇帝

大臣:听到后很惊讶,这皇帝不是好好的吗?得赶紧告诉太子这个消息。

(5)当网络拓扑发生变化时,RSTP可以更快地恢复网络连通性

3、RSTP的快速收敛机制

(1)边缘端口机制:

定义:直接和终端相连的端口

边缘端口可以直接进入转发状态,不需要延时,并不会触发拓扑改变,不会成环;

边缘端口收到BPDU后,会转变为非边缘端口,重新参与生成树计算;

(2)根端口的快速切换

根端口故障后,如果新的根端口对端的指定端口处于转发状态,则新的根端口立即进入转发状态,不需要向stp一样等30秒切换时间

过程:

网络收敛好后:(被阻塞的口是AP,根端口的替代端口)

当SWA和SWC之间的链路故障时:

(3)指定端口的快速切换--P/A机制

握手请求报文:proposal

握手回应报文:agreement

sw1新增链路或故障链路恢复,指定端口进入转发状态前,向对端sw2发送proposal报文(把P位置位为1的BPDU报文);

sw2收到proposal报文后,立刻进行同步操作,即把除了边缘端口和收到p置位的BPDU报文端口外,其他所有端口阻塞掉,同时防止临时环路;

同步完成后,向对端sw1发送Agreement报文;

收到Agreement报文后,sw1的指定端口进入转发状态;

sw2上被同步阻塞的端口继续进行P/A流程,直至整个网络收敛

临时环路的产生:

分析:sw2收到proposal报文后,立刻进行同步操作,即把除了边缘端口和收到p位置的BPDU报文端口外,其他所有端口阻塞掉。如果不阻塞掉,假设SW3和SW1相连,会在物理上形成一个环路

注:根和指定端口的快速切换有一个共同点:根端口选举好后,会跳过listening和learning,直接进入forwarding

RSTP故障切换时间一般是1秒左右

4、RSTP拓扑改变机制

(1)STP与RSTP拓扑改变机制区别

STP需发TCN BDPU到根桥,由根桥发送TC置位的BPDU报文给其他交换机,而RSTP是直接发送TC置位的 BPDU报文给其他交换机;

收到TC置位的BPDU,RSTP清除其他所有端口学习的MAC地址,而stp是缩短老化时间;

(2)注意:由于每台交换机都可以主动发起RST BPDU,所以取消了TCN机制

5、RSTP和STP的兼容

RSTP端口连续三次收到版本为STP的BPDU,则端口协议直接切换到stp协议;

切换成STP协议的RSTP端口将丧失快速收敛特性;

出现stp与rstp混用的情况,建议将stp设备放在网络边缘;

运行stp协议网桥移除后,由RSTP模式切换到stp模式的端口仍将运行在stp模式;

6、基本配置

【h3c】stp global enable   全局模式下,开启STP功能

【H3c-ethernet0/1】undo stp enable  如果确定某个端口不会存在环路,就可关闭该接口的STP功能

【h3c】stp mode{stp|mstp|rstp|pvst}  配置生成树的模式

【H3c-ethernet0/1]stp edged-port    配置边缘端口

【H3c-ethernet0/1]stp cost cost值   配置端口的COST值

【h3c】stp priority  优先级值

【h3c】stp pathcost-standard {dot1d-1998|dot1t|legacy}  改端口的开销标准

【h3c】stp timer hello 配置hello时间

hello time时间过长会造成,生成树计算消耗,对链路故障迟缓

hello time时间过短,会造成频繁发送配置消息,加重CPU和网络的负担

【h3c】stp timer max-age 时间

max age时间过长会造成,对链路故障迟缓,不能及时被发现;

max age时间过短会造成,在网络拥塞的时候交换机误认为链路故障,造成频繁的生成树重新计算;

【h3c】stp timer forward-delay 时间

时间过长会造成,生成树收敛太慢;

时间过短会造成,在拓扑改变的时候,引入暂时的路径环路;

二、MSTP(Multiple Spanning Tree Protocol,多生成树协议

1、MSTP产生的背景

STP与RSTP的局限:

两个都是单一生成树,所有VLAN共享一颗生成树,造成资源浪费;

无法实现不同VLAN在多条trunk链路上的负载分担;

2、定义:基于实例计算出多颗生成树,实例间实现负载分担

3、MSTP基本概念

MSTP分区域的好处:每个区域独立计算自己的生成树,减少网络拓扑层次,生成树计算时间大幅度缩短,方便每个区独立管理;

MST域:拥有相同MST配置标识的交换机构成的集合,划区域可加快收敛速度和方便管理,相同域的必要条件;

IST:内部生成树,默认存在,每个MST域独立计算的内部生成树实例

CST:公共生成树,默认存在。用来互联MST域的单生成树(把每个MST域作为一台交换机,计算出生成树实例)

CIST:公共内部生成树,默认存在。CST+每个域内部IST。

            实例0:默认所有VLAN都映射在实例0

MST:手动创建的生成树实例,只在一个区域内有效

CIST域根:每个IST的根网桥

CIST总根:整个CIST的根网桥

master端口:CST的根端口,单域MSTP中不可能存在Master端口,多域MSTP中,根域不可能存在Master端口,其他域只有一个;

MSTP 与RSTP的端口角色一样,新增了一个master端口

思考:只有一个域,还存在master端口吗?

答案:不存在

4、MSTP的BPDU格式=RST BPDU+MST专有字段(了解)

5、MSTP计算过程(了解)

先选举总根,再选举域根;

CIST和MST的计算是同步进行的;

在对比优先级向量时,先对比外部向量,再对比内部向量;

MSTP计算结果

6、MSTP中的P|A机制

上游桥发送proposal BPDU中,P、A标志位都置为1;

下游收到P标志位和A标志位的proposal BPDU,再将端口同步后会回应Agreement BPDU,此时A标志位为1,使得上游的定端口快速进入转发状态

特殊情况:SW1给SW2发送  P置位的BPDU,但SW2只认识P、A都置位的BPDU,所以这种情况下P/A机制失败了。失去了快速收敛的特性,只能通过30秒STP计算收敛网络。

解决RSTP和MSTP的P/A机制不兼容问题:

7、MSTP兼容性

当上游交换机是RSTP(根桥),当RSTP做快速转发时,只能发送P置位为1的BPDU报文,而下游的MSTP收到后,不会有任何反应,因为MSTP需要p|A双置位,会导致上游交换机收不到回复,不能进行P|A机制,不能快速收敛,只能等30秒收敛;

解决MSTP与RSTP兼容性用此命令:在下游设备设置【sw1-ethernet0/1】stp no-agreement-check;

【sw1-ethernet0/1】stp compliance{auto|dot1s|legacy}   配置MSTP的兼容性

auto  自动识别

dot1s  标椎格式

Legacy  与非标准格式兼容的格式

摘要侦听:

 全局开启:[h3c]stp config-digest-snooping

端口开启:[h3c-ethernet1/0/1]stp config-digest-snooping

其他厂商设备可能用私有秘钥计算配置摘要

开启摘要侦听使设备不再对比配置摘要,但会导致,只要域名和修订级别一致,VLAN映射关系不一致,也能属于同一个域

三、STP保护机制

1、BPDU保护:

针对边缘端口的保护:

技术背景:若边缘端口收到配置消息,将会转变为非边缘端口新参与生成树计算;使用pc伪造的BPDU报文恶意攻击,将导致频繁参与生成树计算,导致网络不稳定。

措施:启动BPDU保护功能后,如果边缘端口收到了配置消息,MSTP就将这些端口自动关闭。

配置命令:

[sw1]stp bpdu-protection

[sw1-ethernet1/0/1]stp edged-port

2、根桥保护:

技术背景:合法根桥收到优先级更高的BPDU,将失去根桥的角色,并重新引起STP计算

解决方案:设置根桥保护端口,一旦收到优先级更高的BPDU,则立刻将端口设置为lestening状态,不再转发。

配置命令:[sw1-ethernet1/0/1]stp root-protection

3、环路保护:

技术背景:环形链路拥塞,导致没及时收到BPDU,从而重新计算STP、开启阻塞端口,形成逻辑环路

解决方案:配置环路保护端口,当接受不到对端交换机的BPDU时,若端口参与了STP计算,则该端口进入discarding状态。

配置命令:[sw1-ethernet1/0/1]stp loop-protection

4、TC保护:

技术背景:在有伪造的TC BPDU报文恶意攻击设备时,设备短时间会收到很多TC BPDU报文,频繁的删除操作会给设备带来很大负担,给网络的稳定带来很大隐患。

解决方案:

设置设备在收到TC BPDU报文后的10秒内,记性地址表项删除操作的最大次数;

监控在该时间内收到的TC BPDU报文树是否大于门限值;

配置命令:

[sw1]stp tc-protection

[sw1]stp tc-protection threshold 数目

四、MSTP实验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/839114.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

线程的概念和控制

文章目录 线程概念线程的优点线程的缺点线程异常线程用途理解虚拟地址 线程控制线程的创建线程终止线程等待线程分离封装线程库 线程概念 什么是线程? 在一个程序里的一个执行路线就叫做线程(thread)。更准确的定义是:线程是“一…

2024中青杯数学建模C题:“X 疾病”在人群中的传播代码论文思路分析

2024中青杯数学建模C题论文和代码已完成,代码为C题全部问题的代码,论文包括摘要、问题重述、问题分析、模型假设、符号说明、模型的建立和求解(问题1模型的建立和求解、问题2模型的建立和求解、问题3模型的建立和求解)、模型的评价…

c++ queue容器

在C标准库中,std::queue 是一个容器适配器,它提供了队列(FIFO - First In First Out)的数据结构。队列是一种特殊的线性数据结构,只允许在表的前端(front)进行删除操作,而在表的后端…

nssctf(Web刷题)

[SWPUCTF 2021 新生赛]gift_F12 打开题目是一个时间页面,不过看了一会儿发现没有什么用 直接F12打开网页源代码 CtrlF搜索flag 找到了flag NSSCTF{We1c0me_t0_WLLMCTF_Th1s_1s_th3_G1ft} [第五空间 2021]签到题 NSSCTF{welcometo5space} [SWPUCTF 2021 新生赛…

钉钉算是在线办公系统的设计标杆,尽管它依然很难用

不吹不黑,钉钉界面谁的的确简洁,无奈它面向的是场景复杂的办公领域,导致其越来越臃肿难用,反正我是该研究研究,但绝对不会用的。 举报 评论 1

Invoking “make cmake_check_build_system“ failed

前言: 在看过站内其他的方法且试过之后没奏效之后,偶然,无意间,随手整对了,然后后续在老赵的文档也找到了原因,对的上号,那在此我提出一种新的方法,且很简单的小tips。首先先来看看…

数据挖掘与机器学习——机器学习概述

一、什么是机器学习 机器学习的英文名称叫Machine Learning,简称ML,该领域主要研究的是如何使计算机能够模拟人类的学习行为从而获得新的知识。 机器学习与数据挖掘的联系:简单来说,机器学习就是让计算机从大量 的数据中学习到相关…

yaml文件格式详解 及 k8s实战演示

目录 一 k8s 支持的语言格式 1,YAML 语法格式 2,查看 api 资源版本标签 二 k8s 运行nginx pod实例 yaml文件 具体讲解 1,写一个yaml文件demo 2,deployment 管理nginx 的yaml 文件 3,创建资源对象 4&#…

【四、性能测试】Linux stress 压力模拟测试工具

在做 CPU 问题解析之前,需要先了解一下压力模拟工具,可以将 CPU、MEM、IO 等进行压力模拟,可以在模拟压力的过程中进行问题解析 一、STRESS 模拟对CPU、Memory、IO、磁盘进行压力测试。可以使用 stress 工具,它是专门针对 linux…

mysql 多表关联查询性能优化-同一sql不同的执行计划

一、问题背景 相同的sql,不同的日期,执行的时间差异很大,执行计划不一样。执行快时,30ms左右。执行慢时,15s左右。 二、分析结论 1、经过分析,发现不同日期下,sql的执行计划不同,驱…

基于springboot+vue的学生考勤管理系统

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…

实现mysql的主从复制、实现MySQL的读写分离与负载均衡

实验环境 (注明)以下的所有关于yum和rpm以及tar的软件需要自己准备,没有的话可以私信博主 实验目标: 1.实现mysql主从复制 2.实现mysql读写分离与负载均衡 实验一、搭建mysql主从复制 1.建立时间同步环境,在主节…

C++BuilderXE 如何让listView按文件名数字排序而非字母排序

int m_nDataColSort0; bool IsAsctrue; void __fastcall TForm1::RzListView4Compare(TObject *Sender, TListItem *Item1, TListItem *Item2, int Data, int &Compare) { if(m_nDataColSort0) { //按列表第二列排序 //CompareCompareText(Item1->SubItems-…

卷积神经网络(CNN)详细介绍及其原理详解

卷积神经网络(Convolutional Neural Networks,简称CNN)是深度学习中非常重要的一类神经网络,主要用于图像识别、图像分类、物体检测等计算机视觉任务。本文将详细介绍卷积神经网络的基本概念、结构组成及其工作原理,并…

BCD编码(8421)介绍

概念 BCD (Binary-Coded Decimal) 是一种二进制的数字编码形式,其特点每个十进制数位用4个二进制位来表示。 在网络IO中,你传输一个数字类型最少需要一字节,传输两个数字类型最少需要两字节,但是当你使用BCD编码后传输&#xff…

防静电液的这些用处你知道多少

防静电液又叫抗静电剂,是工业上常用来消除静电的化学用品,一般是液体状态,它的用途很广泛。 防静电液适用于对静电有控制要求的电器、仪器桌面、台面、塑料制品、包装品、存储盒、托盘、毛毯、织物等任何物品表面。 应用举例如消除各种塑胶材…

微服务中的鉴权怎么做?

大家好,我是苍何呀。 现在出去找工作,简历上不写上微服务的技术,仿佛自己跟不上时代了,面试官更是喜欢盯着微服务项目来提问。 但其实虽说微服务是主流,随着云原生架构的发展,微服务也是趋势,…

图论-最短路算法

1. Floyd算法 作用:用于求解多源最短路,可以求解出任意两点的最短路 利用动态规划只需三重循环即可(动态规划可以把问题求解分为多个阶段)定义dp[k][i][j]表示点i到点j的路径(除去起点终点)中最大编号不超…

数据库的约束 not null, unique, default, primary key, foreign key, check

约束可以理解成 数据库提供的一种针对数据的合法性进行验证的机制, 在创建表的时候使用 1. 约束类型 NOT NULL - 指示某列不能存储 NULL 值, 表里的这个内容是必填项UNIQUE - 保证某列的每行必须有唯一的值, 不能重复 每次插入/修改时, 都要先触发查询, 如果当前插入/修改的…

原来Rstudio还可以这么使用,又方便了一些

在别人的电子书,你的电子书,都在bookdown中我们讲述了bookdown用于自动化文档生成。里面涉及到一个文件Rproj用于项目管理。 本身是一个很简单的文件,里面的内容一般不需要修改,只是放置在每个项目目录下即可。 比如我们有个内容…