2024.5组队学习——MetaGPT智能体理论与实战(待续)

学习资料:项目地址——hugging-multi-agent、在线阅读、MetaGPT项目、MetaGPT中文文档

文章目录

    • 一、环境配置
      • 1.1 配置MetaGPT
      • 1.2 配置大模型api_key
      • 1.3 测试demo

一、环境配置

全部工作在Autodl上完成,下面是简单记录:

1.1 配置MetaGPT

下面直接以开发模式安装MetaGPT(拉取MetaGPT项目安装),这样可以更加灵活的使用MetaGPT框架,适合尝试新的想法或者利用框架创建复杂功能(如新颖的记忆机制)的开发者和研究者。

conda create -n MetaGPT python=3.10
conda activate MetaGPTgit clone https://github.com/geekan/MetaGPT.git
cd /your/path/to/MetaGPT
pip install -e .

Autodl默认使用jupyter来编写代码,且默认是base环境下的内核。如果要切换成Conda环境下的python内核,需要运行:

# 将新的Conda虚拟环境加入jupyterlab中
conda activate MetaGPT                       # 切换到创建的虚拟环境:MetaGPT
conda install ipykernel
ipython kernel install --user --name=MetaGPT   # 设置kernel,--user表示当前用户,MetaGPT为虚拟环境名称

执行以上命令后,如果创建新的Notebook,那么可以选择名为MetaGPT的Notebook。已有的Notebook也可以在右上角切换成MetaGPT内核(ipykernel)。

1.2 配置大模型api_key

  下面使用文心一言 API来进行演示,注册即送20元的额度,有效期一个月。首先我们需要进入文心千帆服务平台,注册登录之后选择“应用接入”——“创建应用”。然后简单输入基本信息,选择默认配置,创建应用即可。

在这里插入图片描述

  创建完成后,点击应用的“详情”即可看到此应用的 AppID,API Key,Secret Key。然后在百度智能云在线调试平台-示例代码中心快速调试接口,获取AccessToken(不解之处,详见API文档)。最后在项目文件夹下使用vim .env(Linux)或type nul > .env(Windows cmd)创建.env文件,并在其中写入:

QIANFAN_AK="xxx"
QIANFAN_SK="xxx"
access_token="xxx"

下面将这些变量配置到环境中,后续就可以自动使用了。

# 使用openai、智谱ChatGLM、百度文心需要分别安装openai,zhipuai,qianfan
import os
import openai,zhipuai,qianfan
from langchain.llms import ChatGLM
from langchain.chat_models import ChatOpenAI,QianfanChatEndpointfrom dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file
openai.api_key =os.environ['OPENAI_API_KEY']
zhipuai.api_key =os.environ['ZHIPUAI_API_KEY']
qianfan.qianfan_ak=os.environ['QIANFAN_AK']
qianfan.qianfan_sk=os.environ['QIANFAN_SK']

MetaGPT还可以使用yaml文件来配置模型和key,其配置优先级为:config/key.yaml > config/config.yaml > environment variable。clone安装的话,项目默认是读取config/config2.yaml,直接将其进行修改(先备份):

# Full Example: https://github.com/geekan/MetaGPT/blob/main/config/config2.example.yaml
# Reflected Code: https://github.com/geekan/MetaGPT/blob/main/metagpt/config2.py
# Config Docs: https://docs.deepwisdom.ai/main/en/guide/get_started/configuration.html
llm:api_type: "zhipuai"  # or azure / ollama / groq etc.model: "GLM-3-Turbo"  # or gpt-3.5-turboapi_key: "YOUR_API_KEY"

1.3 测试demo

如果你使用git clone方法进行安装,只需在Linux终端简单执行以下代码:

metagpt "write a 2048 game"

此时报错:

ImportError: /lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.29' not found (required by 
/root/miniconda3/envs/MetaGPT/lib/python3.10/site-packages/zmq/backend/cython/../../../../../libzmq.so.5)

这是因为在导入 zmq(PyZMQ)这个库时,它的依赖库 libstdc++的一个特定版本 GLIBCXX_3.4.29 没有被找到没有找到,需要将libstdc++的路径手动添加到当前的 LD_LIBRARY_PATH 环境变量。

echo $LD_LIBRARY_PATH
/usr/local/nvidia/lib:/usr/local/nvidia/lib64 # 当前LD_LIBRARY_PATH的值find / -name libstdc++.so  # 查找libstdc++安装路径
/root/miniconda3/envs/MetaGPT/lib/libstdc++.so
/root/miniconda3/lib/libstdc++.so
/root/miniconda3/pkgs/libstdcxx-ng-9.3.0-hd4cf53a_17/lib/libstdc++.so
/root/miniconda3/pkgs/libstdcxx-ng-11.2.0-h1234567_1/lib/libstdc++.so
/usr/lib/gcc/x86_64-linux-gnu/9/libstdc++.so

运行以下代码手动添加libstdc++安装路径:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/root/miniconda3/envs/MetaGPT/lib

再次运行metagpt "write a 2048 game"

2024-05-13 23:05:39.184 | INFO     | metagpt.const:get_metagpt_package_root:29 - Package root set to /root/autodl-tmp/MetaGPT
2024-05-13 23:05:46.278 | INFO     | metagpt.team:invest:93 - Investment: $3.0.
2024-05-13 23:05:46.280 | INFO     | metagpt.roles.role:_act:396 - Alice(Product Manager): to do PrepareDocuments(PrepareDocuments)
2024-05-13 23:05:46.366 | INFO     | metagpt.utils.file_repository:save:57 - save to: /root/autodl-tmp/MetaGPT/workspace/20240513230546/docs/requirement.txt
2024-05-13 23:05:46.371 | INFO     | metagpt.roles.role:_act:396 - Alice(Product Manager): to do WritePRD(WritePRD)
2024-05-13 23:05:46.372 | INFO     | metagpt.actions.write_prd:run:86 - New requirement detected: write a 2048 game
[CONTENT]
{"Language": "zh_cn","Programming Language": "Python","Original Requirements": "开发一个2048游戏","Project Name": "2048_game","Product Goals": ["提供有趣的用户体验","提高可访问性,确保响应性","拥有更优美的界面"],"User Stories": ["作为一名玩家,我希望能够选择难度等级","作为一名玩家,我希望每局游戏后都能看到我的分数","作为一名玩家,当我失败时,我希望有一个重新开始的按钮","作为一名玩家,我希望看到一个使我感觉良好的优美界面","作为一名玩家,我希望能够在手机上玩游戏"],"Competitive Analysis": ["2048游戏A:界面简单,缺乏响应性功能","play2048.co:具有优美的响应性界面,并显示我的最佳分数","2048game.com:具有响应性界面并显示我的最佳分数,但广告较多"],
...
...
Based on the provided code snippet, there are no bugs, and the implementation aligns with the requirements. However, without the full context of how this class is used within the larger application, and without confirmation that all necessary pre-dependencies have been imported, it's not possible to give a definitive LGTM (Looks Good To Me) approval. Therefore, the code is recommended to be merged with some changes, specifically ensuring that all pre-dependencies are imported and any intended reuse of methods from other files is correctly implemented.
2024-05-13 23:12:06.911 | WARNING  | metagpt.utils.cost_manager:update_cost:49 - Model GLM-3-Turbo not found in TOKEN_COSTS.
2024-05-13 23:12:06.916 | INFO     | metagpt.utils.file_repository:save:57 - save to: /root/autodl-tmp/MetaGPT/workspace/2048_game/2048_game/tile.py
2024-05-13 23:12:06.919 | INFO     | metagpt.utils.file_repository:save:62 - update dependency: /root/autodl-tmp/MetaGPT/workspace/2048_game/2048_game/tile.py:['docs/system_design/20240513230605.json', 'docs/task/20240513230605.json']
2024-05-13 23:12:06.928 | INFO     | metagpt.utils.git_repository:archive:168 - Archive: ['.dependencies.json', '2048_game/game.py', '2048_game/main.py', '2048_game/tile.py', '2048_game/ui.py', 'docs/prd/20240513230605.json', 'docs/requirement.txt', 'docs/system_design/20240513230605.json', 'docs/task/20240513230605.json', 'requirements.txt', 'resources/competitive_analysis/20240513230605.mmd', 'resources/data_api_design/20240513230605.mmd', 'resources/prd/20240513230605.md', 'resources/seq_flow/20240513230605.mmd', 'resources/system_design/20240513230605.md']
Unclosed connection
client_connection: Connection<ConnectionKey(host='open.bigmodel.cn', port=443, is_ssl=True, ssl=None, proxy=None, proxy_auth=None, proxy_headers_hash=None)>

整个运行下来花了0.06元左右,结果在autodl-tmp/MetaGPT/workspace/2048_game下。

在这里插入图片描述
或者是在终端运行以下代码:

# test.py
# 如果是ipynb文件会报错asyncio.run() cannot be called from a running event loopimport asynciofrom metagpt.actions import Action
from metagpt.environment import Environment
from metagpt.roles import Role
from metagpt.team import Teamaction1 = Action(name="AlexSay", instruction="Express your opinion with emotion and don't repeat it")
action2 = Action(name="BobSay", instruction="Express your opinion with emotion and don't repeat it")
alex = Role(name="Alex", profile="Democratic candidate", goal="Win the election", actions=[action1], watch=[action2])
bob = Role(name="Bob", profile="Republican candidate", goal="Win the election", actions=[action2], watch=[action1])
env = Environment(desc="US election live broadcast")
team = Team(investment=10.0, env=env, roles=[alex, bob])asyncio.run(team.run(idea="Topic: climate change. Under 80 words per message.", send_to="Alex", n_round=5))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/837124.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

不好!有敌情,遭到XSS攻击【网络安全篇】

XSS&#xff1a;当一个目标的站点&#xff0c;被我们用户去访问&#xff0c;在渲染HTMl的过程中&#xff0c;出现了没有预期到的脚本指令&#xff0c;然后就会执行攻击者用各种方法注入并执行的恶意脚本&#xff0c;这个时候就会产生XSS。 涉及方&#xff1a; 用户&#xff0…

前端铺子-uniapp移动端:跨平台开发新篇章

一、引言 在移动应用开发领域&#xff0c;随着技术的不断进步&#xff0c;用户对应用的需求也日益多样化。如何快速、高效地开发跨平台应用成为了前端开发者面临的一大挑战。uni-app作为一款使用Vue.js开发所有前端应用的框架&#xff0c;凭借其一次编写、多端运行的特性&…

Vue Excel 文件流导出乱码快速解决方案

今日在开发一个导出功能&#xff0c;原本一个非常简单的功能&#xff0c;却没想里面藏了陷阱&#xff01; 背景 前端导出的文件流乱码&#xff0c;此时确定非后端问题&#xff08;可以在postman导出是否正常来判断&#xff09;。 前端导出&#xff1a; 后端正常数据&#xf…

Nature 综述(IF=88):微生物群落和土壤性质之间的相互作用

随着社会的发展&#xff0c;环境污染和自然资源的消耗日益严重&#xff0c;土壤生态系统的健康状况备受关注。然而&#xff0c;当前研究领域存在一个问题&#xff0c;即在研究土壤微生物群落结构的同时&#xff0c;忽略了微生物对土壤环境的影响。本文旨在探讨微生物如何通过生…

【树】简要理解树的概念

P. S.&#xff1a;以下代码均在VS2019环境下测试&#xff0c;不代表所有编译器均可通过。 P. S.&#xff1a;测试代码均未展示头文件stdio.h的声明&#xff0c;使用时请自行添加。 目录 1、树的概念2、树的相关概念3、结语 1、树的概念 树是一种非线性的数据结构&#xff0c;它…

C#语言进阶

一、简单数据结构类 1. ArrayList ArrayList是一个 C# 为我们封装好的类&#xff0c;它的本质是一个 object 类型的数组。ArrayList类帮助我们实现了很多方法&#xff0c;比如数组的增删查改 1.1 声明 using System.Collections;ArrayList array new ArrayList(); 1.2 增…

利用光学和SAR数据进行亚马逊热带雨林监测

亚马逊热带雨林&#xff0c;670万平方公里&#xff0c;物种丰富&#xff0c;森林历史悠久。巴西环保局用光学和SAR数据进行森林监测&#xff0c;主要监测森林砍伐范围、人为破坏、非法采矿和隐蔽的飞机跑道。 图 2011年12月森林砍伐范围 在SAR强度数据上&#xff0c;被砍伐的森…

Java 实现Mybatis plus 批量删除

数据库实体字段并不映射的情况&#xff0c;直接请求体集合接收。 PostMapping("/removeIdsInfo")public R<Void> removeIdsInfo(RequestBody List<Integer> ids) {return exStudentService.removeIdsInfo(ids);} /**** 学生模块根据集合id 批量删除数据*…

HUE工具介绍使用

一、HUE工具介绍使用 HUE是CDH提供一个hive和hdfs的操作工具&#xff0c;在hue中编写了hiveSQl也可以操作hdfs的文件 http://hadoop01:9870 hdfs的web访问端口 hdfs://hadoop01:8020 hdfs的程序访问端口 进入hue

【Linux】了解信号产生的五种方式

文章目录 正文前的知识准备kill 命令查看信号man手册查看信号信号的处理方法 认识信号产生的5种方式1. 工具2. 键盘3. 系统调用kill 向任意进程发送任意信号raise 给调用方发送任意信号abort 给调用方发送SIGABRT信号 4. 软件条件5. 异常 正文前的知识准备 kill 命令查看信号 …

虚拟机桥接模式连接失败解决方案

问题&#xff1a; 虚拟机之前使用一直没有问题&#xff0c;某次开机后不能正常使用桥接模式了&#xff0c;确认防火墙等相关都已关闭设置好。 解决方案&#xff1a; 添加新的网络适配器后&#xff0c;改成桥接模式&#xff0c;然后保存后重新打开&#xff0c;可以正常使用

Ubuntu22.04怎么安装cuda11.3

环境&#xff1a; WSL2 Ubuntu22.04 问题描述&#xff1a; Ubuntu22.04怎么安装cuda11.3 之前是11.5 解决方案&#xff1a; 在Ubuntu 22.04上安装CUDA 11.3需要一些步骤&#xff0c;因为CUDA 11.3不是为Ubuntu 22.04官方支持的版本。但是&#xff0c;您仍然可以通过以下步…

“圣诞树图案的打印~C语言”

圣诞树图案的打印~C语言 题目原文&#xff1a;[圣诞树](https://www.nowcoder.com/practice/9a03096ed8ab449e9b10b0466de29eb2?tpId107&rp1&ru/ta/beginner-programmers&qru/ta/beginner-programmers/question-ranking&difficulty&judgeStatus&tags&…

运维安全管理系统:“四集中”管理 解决迫切问题

日前&#xff0c;国内专注于保密与非密领域的分级保护、等级保护、业务连续性安全和大数据安全产品解决方案与相关技术研究开发的领军企业——国联易安依托自身强大的研发能力&#xff0c;丰富的行业经验&#xff0c;自主研发了新一代软硬件一体化统一安全运维平台——国联易安…

【单片机调试】mcu调试bug记录

【单片机调试】mcu调试bug记录 2023.5-2023.11待输入 2023.12-2023.22024.3-至今1.spi通信问题 2023.5-2023.11 待输入 2023.12-2023.2 辞职阶段&#xff1a;【STM32调试】寄存器调试不良问题记录持续版 2024.3-至今 1.spi通信问题 现象说明&#xff1a; mcu与afe芯片为spi通…

JAVA智慧工地管理系统源码,智慧工地扬如何实现对工地扬尘的实时监测

智慧工地扬尘监测系统概述 智慧工地扬尘监测系统是一种利用现代信息技术&#xff0c;如光电传感技术和无线传输技术&#xff0c;对工地扬尘污染进行实时监测和管理的高效工具。该系统的目的是为了保护环境&#xff0c;减少因建筑施工产生的扬尘对周边地区的影响&#xff0c;同…

灵卡 LCC262 高性能多功能数字视频和音频一体式采集卡详尽解读

一、前言 作为计算机视觉技术解决方案提供商——灵卡&#xff08;LingCard&#xff09;公司推出的新一代超群性能采集卡—— LCC262&#xff0c;以其卓越的性能表现和丰富多样的功能特性&#xff0c;为广大用户带来了前所未有的视频和音频处理体验。本文旨在对该产品进行详细解…

python内置类bytearray()详解

bytearray 是 Python 的一个内置类&#xff0c;它提供了一个可变序列的字节数组。 bytearray 数组的元素必须是0-255之间的整数&#xff0c;这些整数对应于ASCII字符集中的数字。下面着张图是部分ASCII字符&#xff1a; bytearray 是可变的&#xff0c;可修改其内容&#xff0c…

将视觉语言模型训练为智能手机助手

24年4月Agile Loop和德国弗赖堡大学的论文“Training A Vision Language Model As Smartphone Assistant”。 为了解决能够执行各种用户任务的数字助理挑战&#xff0c;该研究重点是基于指令的移动设备控制域。 用大语言模型 (LLM) 的最新进展&#xff0c;本文提出一种可以在移…

免费思维13招之十:增值型思维

免费思维13招之十:增值型思维 免费思维的另一大战略思维——增值型思维。 为了提高客户的粘性而促进重复性消费,我们必须对客户进行免费的增值型服务。 大家不要把增值型思维与赠品型思维混淆,增值型思维重心在于提高与消费者的粘性而促进重复消费,重心在后端。而赠品型思…