C#泛型委托

在C#中,delegate 关键字用于声明委托(delegates),委托是一种类型安全的函数指针,允许你传递方法作为参数或从方法返回方法。有时我们需要将一个函数作为另一个函数的参数,这时就要用到委托(Delegate)机 制。

delegate void GDelegate<T>(T t);
定义了一个名为 GDelegate 的泛型委托。这个委托接受一个类型为 T 的参数 t,并且不返回任何值(void)。T 是一个类型参数,意味着这个委托可以用于任何类型的方法,只要那个方法有一个参数并且没有返回值。

在C#中,Action 是一个内置的委托(delegate)类型,用于封装没有返回值(即返回类型为 void)的方法。Action 委托有多个重载版本,可以接受不同数量的参数,每个参数可以有不同的类型。
Action 委托的基本定义如下:
public delegate void Action(); // 没有参数  
public delegate void Action<T>(T obj); // 一个参数  
public delegate void Action<T1, T2>(T1 arg1, T2 arg2); // 两个参数  
// ... 以此类推,直到 Action<T1, T2, ..., T16>

在C#中,Func<TResult> 是一个泛型委托,用于封装具有返回值的方法。与 Action 委托不同,Func 委托总是有一个返回值,并且可以接受任意数量的输入参数。在你给出的例子中,Func<String, String> 是一个特定的 Func 委托类型,它接受一个 string 类型的参数并返回一个 string 类型的值。

Func<String,String>func=new Func<String,String>(Method3);
func("我是带返回值的Func委托"); 

Gdelegate类: 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;namespace 泛型委托
{delegate void GDelegate<T>(T t);//定义了一个名为 Gdelegate 的泛型委托。这个委托接受一个类型为 T 的参数 t,并且不返回任何值//T 是一个类型参数,意味着这个委托可以用于任何类型的方法,只要那个方法有一个参数并且没有返回值。internal class Gdelegate//internal 是一个访问修饰符,用于指定一个类型或成员仅在其声明它的程序集中可见{static string result;public static void InvokeDelegate() {GDelegate<string> gdelegate1 = new GDelegate<string>(Method1);//把方法以变量的形式传送,并以方法的形式执行gdelegate1("我是泛型委托1");Action<String>action=new Action<String>(Method1);action("我是泛型委托1-action");//官方版本(不带返回值),效果同
//Action<T>和Func<TResult>这两个内置的委托类型,它们分别在System命名空间中定义,用于处理没有返回值(Action)和带有返回值(Func)的方法。GDelegate<int> gdelegate2= new GDelegate<int>(Method2);gdelegate2(99);//传参intFunc<String,String>func=new Func<String,String>(Method3);result =func("我是带返回值的Func委托");//Func<String, String> 是一个特定的 Func 委托类型,它接受一个 string 类型的参数并返回一个 string 类型的值。}public static void Method1(string str) {Console.WriteLine(str);}public static void Method2(int num){Console.WriteLine("我是泛型委托2:"+num);}public static String Method3(string str){Console.WriteLine(result + "AB");return str+"A";}}
}

  Program类:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;namespace 泛型委托
{internal class Program{static void Main(string[] args){Gdelegate.InvokeDelegate();//调用静态方法----类名.方法名string str= Gdelegate.Method3("我是带参的");//str接收的是return str+"A"// Func 委托类型,它接受一个 string--"我是带参的" 类型的参数,并返回一个 stringConsole.WriteLine(str);Console.ReadKey();}}}

启动程序:

AB是在执行:Gdelegate.InvokeDelegate();//调用静态方法----类名.方法名
时执行了: Func<String,String>func=new Func<String,String>(Method3);--->Console.WriteLine(result + "AB");//
而result 此时为null.下一句:result =func("我是带返回值的Func委托:");
 result接收了:"我是带返回值的Func委托:"+"A"
所以才有了执行:string str= Gdelegate.Method3("我是带参的");
时的:我是带返回值的Func委托:AAB
 执行:Console.WriteLine(str);
       我是带参的A

--------------------------------------------

下面我们设计一个马戏表演函数 CircusStart(),它的第一个参数是代表动物表演的函 数,传给它什么样的函数,就进行什么动物的表演。

c#控制台程序:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;namespace delegateAnimalPlay
{internal class Program{//定义委托 delegate void AnimalPlay(string name);//委托声明 AnimalPlaystatic void Main(string[] args){AnimalPlay deleDogPlay = new AnimalPlay(DogPlay); //把函数 DogPlay()转换为 AnimalPlay 型委托CircusStart(deleDogPlay, "Good evening");// 把委托 deleDogPlay 传给函数CircusStart()Console.ReadKey();}static void CircusStart(AnimalPlay animalPlay, string hello)//静态方法 CircusStart 的签名,该方法接受一个 AnimalPlay 委托和一个字符串参数 name{Console.WriteLine("女士们,先生们,我们的马戏表演开始了!");animalPlay(hello);}//函数:狗表演 static void DogPlay(string greetings){Console.WriteLine("{0},I am Snoopy!", greetings);//greetings接收hello--"Good evening,I am Snoopy!"Console.WriteLine(@"  狗在表演_");}//函数:猫表演 static void CatPlay(string greetings){Console.WriteLine("{0},I am Kitty!", greetings);Console.WriteLine(@" 猫在表演");}//函数:狮子表演 static void LionPlay(string greetings){Console.WriteLine("{0},I am Simba!", greetings);Console.WriteLine(@"狮子在表演 ");}  
}
}

启动程序: 

委托实例deleDogPlay实际上相当于函数DogPlay()的别名。 我们也可以传入CatPlay(),看看结果

在我们的程序中,我们总是调用函数 CircusStart()进行表演,定义该函数时,我们不 知道也不关心传递给它的委托到底代表哪个函数,直到调用函数 CircusStart(),并把实际 参数传递给它时,这个函数才具体化。传给它什么样的具体函数,就进行什么样的表演, 传给它 deleDogPlay,马戏团就进行狗的表演;传给它 deleCatPlay,马戏团就进行猫的表 演;传给它 deleLionPlay,马戏团就进行狮子表演。因此以委托为参数的函数具有一定的 通用性。 

------------------------------------

下面我们利用委托的通用性设计一个通用的求定积分的函数。

函数f(x)在区间[a,b]上定积分  \int_{a}^{b}  f x ( ) 等于函数图像与x轴所围成的曲边梯形的面积。

怎样求曲边梯形的面积呢?我们把曲边梯形分成无数块细小的矩形,这些小矩形面积 之和即可以看做曲边梯形面积的近似值。显然小矩形分得越细,面积就越精确。假如我们 把它分成1000份,则每个小矩形的宽度为:\Delta = \frac{b-a}{1000}

第i个小矩形的宽为Δ,高为f(a+iΔ),所以其面积为:Si=Δ*f(a+iΔ)

故函数f(x)在区间[a,b]上的定积分(曲边梯形的面积)为:\int_{a}^{b}  f x ( )=\sum_{i=1}^{1000}Si=\sum_{i=1}^{1000}Δ*f(a+iΔ)

求定积分,需要知道积分上限a,积分下限b和被积函数f(x),需要把被积函数以参数的形式传递给定积分函数,所以需要利用委托实现。 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;namespace delegateIntegral
{internal class Program{ //被积函数的委托 delegate double Integrand(double x);static void Main(string[] args)//进行定积分运算{double result1 = DefiniteIntegrate(1, 5, F1);double result2 = DefiniteIntegrate(0, 1, F2);Integrand f3 = delegate (double x){return 3 * x + 5;};double result3 = DefiniteIntegrate(2, 8, f3);//匿名函数当作函数的参数Console.WriteLine("result3 = {0}", result3);Console.WriteLine("result1 = {0}", result1);Console.WriteLine("result2 = {0}", result2);Console.ReadKey();}//被积函数F1(x)=2x+1 static double F1(double x){return 2 * x + 1;}//被积函数F2(x)=x2 static double F2(double x){return x * x;}//函数:定积分 static double DefiniteIntegrate(double a, double b, Integrand fun){const int sect = 1000;//分割数目 double delta = (b - a) / sect;double area = 0;for (int i = 1; i <= 1000; i++){area += delta * fun(a + i * delta);}return area;}}
}

运行程序:

利用委托可以实现以函数为参数,提高 程序的通用性。实际上委托也是由类实现的,当我们创建一种委托时,.NET会创建一个从System.Delegate派生出来的类,类中有一个调用列表, 列表中包含着指向被委托函数的引用。学过C++的读者会觉得委托与C++的函数指针非常 类似,然而与C++的函数指针相比,委托是一种类型安全的方式,并能实现很多其它功能。

创建委托实例时不仅可以使用已有的函数,而且可以直接使用匿名函数(Anonymous Function)。

static void Main(string[] args) 

    / / 匿名函数 
    Integrand f3 = delegate(double x) 
    { 
        return 3 * x + 5; 
    } ; 
    double result3= DefiniteIntegrate(2, 8, f3); 
    Console.WriteLine("result3 = {0}", result3); 

}

也可以直接把匿名函数当作函数的参数。 double result3 = DefiniteIntegrate(2,8, delegate(double x){ return 3*x+5;});

利用匿名函数可以直接把“代码块”定义成委托,而不需要事先定义函数。在上面的 代码中我们定义了一个Integrand型委托f3,该委托的具体代码在后面的花括号中(注意, 花括号后要添加分号)。匿名函数有很多优点,比较突出的一个是它不光可以使用代码块 内定义的变量,而且可以使用代码块外定义的变量,即可以使用宿主函数的局部变量。比如下面的代码: 
static void Main(string[] args) 

double a = 3; 
double b = 5; 
    Integrand f4 = delegate(double x) 
    { 
        return a * x + b; 
    } ; 
double result4 = DefiniteIntegrate(2, 8, f4); 
    Console.WriteLine("result4 = {0}", result4);
}

在上面的代码中,在匿名函数内部使用了外部定义的变量a、b,我们把这种情况称为 外层变量被匿名函数捕获,它们的生存周期将延长至委托被销毁为止。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/836501.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法题② —— 链表专栏

1. 链表数据结构 struct ListNode {int val;ListNode *next;ListNode() : val(0), next(nullptr) {}ListNode(int x) : val(x), next(nullptr) {}ListNode(int x, ListNode *next) : val(x), next(next) {}};2. 链表的删除 2.1 移除链表元素 力扣&#xff1a;https://leetco…

引擎:主程渲染

一、引擎发展 二、引擎使用 1.游戏渲染流程 2.3D场景编辑器操作与快捷键 3.节点的脚本组件 脚本介绍 引擎执行流程 物体节点、声音组件\物理组件\UI组件、脚本组件 暴露变量到面板 4.节点的查找 基本查找 this.node&#xff1a;挂载当前脚本的节点A&#xff1b; this.nod…

一、精准化测试介绍

精准化测试介绍 一、精准化测试是什么&#xff1f;二、什么是代码插桩&#xff1f;三、两种插桩方式Offine模式&#xff1a;On-the-fly插桩: 四、jacoco覆盖率报告展示五、增量代码覆盖率监控原理六、精准测试系统架构图七、全量与增量覆盖率报告包维度对比八、全量与增量覆盖率…

牛客NC343 和大于等于K的最短子数组【困难 前缀和 Java/Go】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/3e1fd3d19fb0479d94652d49c7e1ead1 思路 本答案利用前缀和解答&#xff0c;Java&#xff0c;Go答案通过&#xff0c;但是同样的代码用PHP的话有一个测试用例超时 应该还有更优秀的答案&#xff0c;后面找到更优…

2022——蓝桥杯十三届2022国赛大学B组真题

问题分析 看到这个问题的同学很容易想到用十层循环暴力计算&#xff0c;反正是道填空题&#xff0c;一直算总能算得出来的&#xff0c;还有些同学可能觉得十层循环太恐怖了&#xff0c;写成回溯更简洁一点。像下面这样 #include <bits/stdc.h> using namespace std; in…

apk反编译修改教程系列-----反编译apk 去除软件强制更新的八种方式步骤解析【十七】

安卓有的apk 软件会不断更新。但有些用户需要旧版的有些功能或者新版功能增减原因等等。需要不更新继续使用。这类问题有的可以简单修改版本号来跳过更新。或者有的软件可以忽略。但对于某些无法跳过更新界面等等的apk。就需要深度反编译来去除软件的强制更新。 通过课程可以了…

wsl安装Xfce桌面并设置系统语言和输入法

一、安装xfce &#xff08;有相关的依赖都会安装&#xff09; sudo apt -y install xfce4 二、 安装远程连接组件 sudo apt install xrdp -y 并重新启动 Xrdp 服务&#xff1a; sudo systemctl restart xrdp 本地windows系统中请按 winR 键 呼出运行 在运行中输入 mstsc…

1067: 有向图的邻接表存储强连通判断

解法&#xff1a; 定理&#xff1a;有向图G是强连通图的充分必要条件是G中存在一条经过所有节点的回路 跟上道题一样 这是错误代码 #include<iostream> #include<vector> using namespace std; int arr[100][100]; void dfs(vector<bool>& a,int u) {a…

唤醒手腕 Go 语言 并发编程、Channel通道、Context 详细教程(更新中)

并发编程概述 ​ 一个进程可以包含多个线程&#xff0c;这些线程运行的一定是同一个程序&#xff08;进程程序&#xff09;&#xff0c;且都由当前进程中已经存在的线程通过系统调用的方式创建出来。进程是资源分配的基本单位&#xff0c;线程是调度运行的基本单位&#xff0c…

【JAVA进阶篇教学】第十二篇:Java中ReentrantReadWriteLock锁讲解

博主打算从0-1讲解下java进阶篇教学&#xff0c;今天教学第十二篇&#xff1a;Java中ReentrantReadWriteLock锁讲解。 在并发编程中&#xff0c;读写锁&#xff08;ReadWriteLock&#xff09;是一种用于管理对共享资源的访问的锁机制&#xff0c;它提供了比传统的互斥锁更高的…

栈的讲解

栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。 进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底&#xff08;因为先进后出&#xff09;。栈中的数据元素遵守后进先出LIFO&#xff08;Last In Firs…

数据结构与算法===回溯法

文章目录 原理使用场景括号生成代码 小结 原理 回溯法是采用试错的思想&#xff0c;它尝试分步骤的去解决一个问题。在分步骤解决问题的过程中&#xff0c;当它通过尝试发现现有的分步答案不能得到有效的正确的解答的时候&#xff0c;它将取消上一步甚至是上几步的计算&#x…

函数模板底层本质

#include<iostream> using namespace std;template<typename T1> T1 ave(T1 a, T1 b) { return a b; }int main() {ave(100, 200);ave(short(100), short(200));return 0; }反汇编代码 模板本质是编译器帮忙生成了不同的函数 就算非类型参数值不一样编译器也重新…

HCIP(BGP综合实验)--8

一&#xff1a;实验要求 二&#xff1a;实现过程 &#xff08;一&#xff09;配置IP地址&#xff1a; AR1: [AR1]int g0/0/0 [AR1-GigabitEthernet0/0/0]ip add 12.1.1.1 24 [AR1-GigabitEthernet0/0/0]int l0 [AR1-LoopBack0]ip add 172.16.0.1 32 [AR1-LoopBack0]int l1 […

TM1650 并联在I2C 信号线的处理方法

目的是可以并联多个TM1650 在标准I2C 总线上&#xff0c;并且不影响其他标准I2C 器件。思路就是拿个额外的开关控制每一片TM1650 的使能&#xff0c;就像SPI 的CS 信号那样。 协议 TM1650 的通信协议虽说不是标准I2C&#xff0c;但也算是比较兼容的&#xff0c;比方说&#x…

springboot实现Aop

一、原理 AOP&#xff08;Aspect Oriented Programming&#xff09;的意思是&#xff1a;面向切面编程&#xff0c;通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术。利用AOP可对业务逻辑进行增强&#xff0c;在不改变原有逻辑的基础上&#xff0c;在其前后进…

YOLOv8独家原创改进: AKConv(可改变核卷积)

1.AKConv原理介绍 地址:2311.11587 (arxiv.org) 摘要:基于卷积运算的神经网络在深度学习领域取得了令人瞩目的成果,但标准卷积运算存在两个固有的缺陷。一方面,卷积运算仅限于局部窗口,无法捕获其他位置的信息, 并且它的采样形状是固定的。 另一方面,卷积核的大小固定为…

基于yolov8+gradio目标检测演示系统设计

YOLOv8与Gradio&#xff1a;开启目标检测的可视化新篇章 随着人工智能技术的飞速发展&#xff0c;目标检测作为计算机视觉领域的重要分支&#xff0c;已经广泛应用于安防监控、自动驾驶、医疗影像等多个领域。而YOLO&#xff08;You Only Look Once&#xff09;系列算法作为目…

Maven多环境与SpringBoot多环境配置

1. Maven多环境配置与应用 1.1 多环境开发 我们平常都是在自己的开发环境进行开发&#xff0c; 当开发完成后&#xff0c;需要把开发的功能部署到测试环境供测试人员进行测试使用&#xff0c; 等测试人员测试通过后&#xff0c;我们会将项目部署到生成环境上线使用。 这个时…

Unity曲线插件Dreamteck Splines生成曲线Mesh

一、需求 脱离编辑器&#xff0c;运行时添加点&#xff0c;动态生成管道、线缆等曲线Mesh。 二、Dreamteck Splines简单运用 这方面资料不多&#xff0c;只有官方文档全英参考&#xff0c;而且又介绍得不详细。 2个重要组件介绍&#xff1a; SplineComputer&#xff1a; 最…