利用大语言模型(KIMI)构建智能产品的控制信息模型

          数字化的核心是数字化建模,为一个事物构建数字模型是一项十分复杂的工作。不同的应用场景,对事物的关注重点的不同的。例如,对于一个智能传感器而言,从商业的角度看,产品的信息模型中应该包括产品的类型,名称,制造商,技术规格,产品图片,3D模型,安全论证等信息。而对于应用工程师而言,关心的是产品的接口,协议和控制方法。产品的商业信息和使用信息是不同的。信息模型也不同。

   于是,产品的商业信息和使用信息采用的建模方式和标准也是不同的。产品信息主要标准包括GS-1,ETIM,ECL@SS。而控制模型包括OPC UA 和工业4.0 管理壳(AAS)。

  本文探讨在ETIM 模型的基础上扩展基于JSON 的控制信息模型。并且通过转换软件将JSON 控制模型转换成OPCUA 模型

     采用JSON 的原因是JSON 更具有可读性。适合大语言模型构建产品模型。笔者认为 大语言模型是生成产品信息模型的最佳工具。

智能产品信息模型   

  对于智能化技术产品而言,产品的信息包含下面几个方面:

  1. 产品的基本信息
  2. 产品的技术指标
  3. 产品的操作过程
  4. 产品的几何图形
  5. 产品的商务信息

   这些信息除了商务信息之外,通常包含在产品的数据表(DataSheet) 中,对于复杂的智能产品,为了帮助用户使用产品,还提供了辅助的技术文档。 商务信息在销售部门的报价单或者ERP 系统中。

           数字化的主要工作之一是构建生产过程中所有资产的数字化模型。产品的基本信息,技术指标和几何图形通常包含在产品分类目录中(例如ETIM,GS-1,ECL@SS)。产品的商务信息包含在电子商务平台信息模型中。而产品的操作过程包含在技术文档中。

  产品操作过程的模型

  在工业4.0 的相关标准中,数字资产的数字化模型被称为资产管理壳(AAS),其中包含了操作数据和服务,这是模型能够转换成自动控制系统中的信息模型,例如OPCUA 信息模型。

       资产管理壳和OPC UA 是相对比较复杂的形式化信息模型,构建这些信息模型要借助专业的设计工具,并且具备一定的AAS和OPCUA 背景知识,笔者关注的重点是使用更加便捷,高效的方法描述产品的信息模型。特别是ChatGPT 技术的出现。为使用自然语言描述信息模型带来了新的机会。在我看来,chatGPT 为代表的大语言模型最强大的能力是将人类自然语言的内容转换成为机器能够识别的形式化信息。

JSON LD 物模型

JSON -LD 的全称是(JSON linked data),是Google公司提出来的,W3C 发布 JSON-LD 1.1 正式推荐标准。

       JSON-LD 是一种轻量级链接数据格式。它 对人类来说很容易读写。它基于已经 成功的 JSON 格式,并提供了一种帮助 JSON 数据互操作的方法。

JSON-LD的初衷是提供了一种更简单的方法来从网站创建机器可读数据以提升搜索结果。

        具体来说,使用 <script type="application/ld+json"> 标签可以让网页中的元素被编码为一个 JSON-LD 对象,并将其嵌入到页面中。这个 JSON-LD 对象可以包含诸如实体名称、描述、图像、地址、联系方式等属性信息,让搜索引擎更好地理解网页的含义和结构。

        通过使用结构化数据,网站管理员可以帮助搜索引擎更好地了解他们网站的内容和结构,并且有助于提高网站在搜索引擎中的排名和可见度。另外,使用 JSON-LD 还可以使您的网站在 Google 的搜索结果中显示富媒体的搜索结果,例如公司地址、电话号码、评分等等。

在网页正文中嵌入结构化数据,例如描述组织、产品或事件的相关信息。以下是一个示例:
 

<!DOCTYPE html>
<html><head><script type="application/ld+json">{"@context": "https://schema.org/","@type": "Organization","name": "Example Company","url": "https://www.example.com/","logo": "https://www.example.com/logo.png"}</script></head><body><h1>Welcome to Example Company</h1><p>Visit our website at <a href="https://www.example.com/">www.example.com</a></p></body>
</html>

JSON-LD 被用于物联网(Web of thing )描述物模型,下面是一个例子:

{"id": "urn:dev:wot:com:example:servient:lamp","name": "MyLampThing","securityDefinitions": {"basic_sc": {"scheme": "basic"}},"security": ["basic_sc"],"properties": {"status" : {"type": "string","forms": [{"href": "https://mylamp.example.com/status"}]}},"actions": {"toggle" : {"forms": [{"href": "https://mylamp.example.com/toggle"}]}},"events":{"overheating":{"data": {"type": "string"},"forms": [{"href": "https://mylamp.example.com/oh","subprotocol": "longpoll"}]}},"annotation": {"@context": {"@base": "http://example.org/data/","vendor": "http://vendor.org/product/"}"@type": "vendor:color-light","isAbstractionOf": "appartment/134#light-1"}
}

 受到WoT 使用JSON LD 建模的启发,我们可以利用JSON构建控制过程的模型:

  • JSON 更适合人类阅读和书写
  • JSON 更适合LLM 生成

这是产品的控制模型: 

{"name":"mydevice","description":"description of mydevice","group_id":"group id","class_id":"class_id","properties":[{"name":"status","type":"string","description":"the status of device"},{"name":"temperature","type":"numeric","description":"the temperature of device","max":"max of value","min":"min of value","value":"the default value"}],"actions":[{"name":"the name og action","description":"the description of the action","arguments":{"inputs":[],"output"[]}}],"events":[{"name":" the name of event","description":"description of the event"}]
}

大语言模型的使用

        笔者曾经尝试使用LLM 直接生成产品信息模型,结果发现,LLM 的输出存在不一致的现象,在数字化建模中是无法接受的。而LLM是基于语言的实例来学习语言的语法。它目前无法学习schima 规范。因此,我放弃了直接生成产品模型的想法,而是为LLM 提供一个JSON 模型,让LLM 完成模型的实例化.通过阅读产品的datasheet ,提取相关信息,填入预先定义的JSON 模型中,并且将JSON 模型中未定义的属性作为专用属性增补在后面。

输入产品控制模型的描述

这是产品的信息
名称 温度传感器
属性:温度最大值:180最小值: -30初始值:0
电流初始值:0
电压
初始值:24
动作:
初始化输入:
输入1:电流初始值输出:无
读取温度:输入:无输出:
输出1当前温度
复位:输入:无
输出:无

将产品模型和产品信息上传给kimi 大模型,结果为:

{"name": "温度传感器","properties": {"temperature": {"max": 180,"min": -30,"initial_value": 0},"current": {"initial_value": 0},"voltage": {"initial_value": 24}},"actions": [{"name": "initialize","description": "初始化设备,设置电流的初始值","arguments": {"inputs": [{"name": "current_initial_value","description": "电流的初始值"}],"outputs": []}},{"name": "read_temperature","description": "读取设备当前的温度值","arguments": {"inputs": [],"outputs": [{"name": "current_temperature","description": "当前的温度值"}]}},{"name": "reset","description": "复位设备到初始状态","arguments": {"inputs": [],"outputs": []}}]
}

非常完美!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/831419.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

修改Ubuntu远程登录欢迎提示信息

无论何时登录公司的某些生产系统&#xff0c;你都会看到一些登录消息、警告或关于你已登录服务器的信息&#xff0c;如下所示。 修改方式 1.打开ubuntu终端,进入到/etc/update-motd.d目录下面 可以发现目录中的文件都是shell脚本, 用户登录时服务器会自动加载这个目录中的文件…

ThreeJS:坐标辅助器与轨道控制器

ThreeJS与右手坐标系 使用ThreeJS创建3D场景时&#xff0c;需要使用一个坐标系来定位和控制对象的位置和方向。 ThreeJS使用的坐标系是右手坐标系&#xff0c;即&#xff1a;X轴向右、Y轴向上、Z轴向前&#xff0c;如下图所示&#xff0c; ThreeJS-右手坐标系 Tips&#xff1a;…

【C++】命名冲突了怎么办?命名空间来解决你的烦恼!!!C++不同于C的命名方式——带你认识C++的命名空间

命名空间 导读一、什么是C?二、C的发展三、命名空间3.1 C语言中的重名冲突3.2 什么是命名空间&#xff1f;3.3 命名空间的定义3.4 命名空间的使用环境3.5 ::——作用域限定符3.6 命名空间的使用方法3.6.1 通过作用域限定符来指定作用域3.6.2 通过关键字using和关键字namespace…

云服务器+ASF实现全天挂卡挂时长

目录 前言正文1.安装下载2.编辑配置文件3.设置Steam社区证书4.启动ASF5.给游戏挂时长6.进阶-ASF自动启动且后台保活 前言 我遇到的最大的问题是&#xff0c;网络问题 其实不然&#xff0c;各大厂商的云服务器后台都有流量监控&#xff0c;意味着依靠一般方法是不能正常访问St…

变量内存和存储单位

基本数据类型及其占位符 存储单位 内存中的数据存储单元是由一个一个的二进制组成的&#xff0c;每个二进制只能存储0 和1 科学家为了更加方便存储更多的数据&#xff0c;把内存中8个二进制分为一组&#xff0c;叫做一个字节&#xff0c;Byte字节是最小的存储单位。(重点⭐⭐⭐…

聚焦Spring后置处理器分析对比

目录 一、理解Spring后置处理器 二、Spring后置处理器在IOC容器和bean对象生命周期的切入时机分析 &#xff08;一&#xff09;IOC 容器生命周期中的切入时机 &#xff08;二&#xff09;Bean 对象生命周期中的切入时机 三、BeanPostProcessor后置器分析 &#xff08;一&…

OpenCV(三)—— 车牌筛选

本篇文章要介绍如何对从候选车牌中选出最终进行字符识别的车牌。 无论是通过 Sobel 还是 HSV 计算出的候选车牌都可能不止一个&#xff0c;需要对它们进行评分&#xff0c;选出最终要进行识别的车牌。这个过程中会用到两个理论知识&#xff1a;支持向量机和 HOG 特征。 1、支…

Redis__事务

文章目录 &#x1f60a; 作者&#xff1a;Lion J &#x1f496; 主页&#xff1a; https://blog.csdn.net/weixin_69252724 &#x1f389; 主题&#xff1a;Redis__事务 ⏱️ 创作时间&#xff1a;2024年05月02日 ———————————————— 这里写目录标题 文章目…

SSM+Vue在线OA办公系统

在线办公分三个用户登录&#xff0c;管理员&#xff0c;经理&#xff0c;员工。 SSM架构&#xff0c;maven管理工具&#xff0c;数据库Mysql&#xff0c;系统有文档&#xff0c;可有偿安装调试及讲解&#xff0c;项目保证质量。需要划到 最底 下可以联系到我。 功能如下&am…

蓝桥杯练习系统(算法训练)ALGO-950 逆序数奇偶

资源限制 内存限制&#xff1a;256.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 问题描述 老虎moreD是一个勤于思考的青年&#xff0c;线性代数行列式时&#xff0c;其定义中提到了逆序数这一概念。不过众所周知我们…

nginx--location详细使用和账户认证

在没有使用正则表达式的时候&#xff0c;nginx会先在server中的多个location选取匹配度最高的一个uri&#xff0c;uri是用户请求的字符串&#xff0c;即域名后面的web文件路径&#xff0c;然后使用该location模块中的正则url和字符串串&#xff0c;如果匹配成功就结束搜索&…

C语言----贪吃蛇(补充)

各位看官好&#xff0c;我想大家应该已经看过鄙人的上一篇博客贪吃蛇了吧。鄙人在上一篇博客中只是着重的写了贪吃蛇的实现代码&#xff0c;但是前期的一些知识还没有具体的介绍&#xff0c;比如确认光标位置&#xff0c;句柄等。那么我这一篇博客就来补充上一篇博客所留下来的…

神经网络中的优化方法

一、引入 在传统的梯度下降优化算法中&#xff0c;如果碰到平缓区域&#xff0c;梯度值较小&#xff0c;参数优化变慢 &#xff0c;遇到鞍点&#xff08;是指在某些方向上梯度为零而在其他方向上梯度非零的点。&#xff09;&#xff0c;梯度为 0&#xff0c;参数无法优化&…

数据结构-AVL树

目录 什么是 AVL 树 ASL 度量查找效率 结构体定义 平衡调整 调整类型 左旋和右旋 右旋 左旋 左、右平衡调整 左平衡调整 右平衡调整 插入数据 模拟建立 AVL 树 什么是 AVL 树 二叉排序树的形状取决于数据集&#xff0c;当二叉树的高度越小、结构越合理&#xff0c…

thinkphp家政上门预约服务小程序家政保洁师傅上门服务小程序上门服务在线派单安装教程

介绍 thinkphp家政上门预约服务小程序家政保洁师傅上门服务小程序上门服务在线派单安装教程 上门预约服务派单小程序家政小程序同城预约开源代码独立版安装教程 程序完整&#xff0c;经过安装检测&#xff0c;可放心下载安装。 适合本地的一款上门预约服务小程序&#xff0…

计算机网络——初识网络

一、局域网与广域网 1.局域网&#xff08;LAN&#xff09; 局域网&#xff1a;即Local Area Network&#xff0c;简称LAN。Local即标识了局域⽹是本地&#xff0c;局部组建的⼀种私有⽹络。局域⽹内的主机之间能⽅便的进⾏⽹络通信&#xff0c;⼜称为内⽹&#xff1b;局域⽹和…

A4的PDF按A3打印

先用办公软件打开&#xff0c;比如WPS。 选择打印-属性。 纸张选A3&#xff0c;如果是双面打印&#xff0c;选短边装订&#xff0c;然后在版面-页面排版-每张页数&#xff08;N合1&#xff09;选2。 不同打印机的具体配置可能不一样&#xff0c;但大体都是这个套路。

[NSSCTF]prize_p1

前言 之前做了p5 才知道还有p1到p4 遂来做一下 顺便复习一下反序列化 prize_p1 <META http-equiv"Content-Type" content"text/html; charsetutf-8" /><?phphighlight_file(__FILE__);class getflag{function __destruct(){echo getenv(&qu…

The Role of Subgroup Separability in Group-Fair Medical Image Classification

文章目录 The Role of Subgroup Separability in Group-Fair Medical Image Classification摘要方法实验结果 The Role of Subgroup Separability in Group-Fair Medical Image Classification 摘要 研究人员调查了深度分类器在性能上的差异。他们发现&#xff0c;分类器将个…

基于Springboot的民宿管理平台

基于SpringbootVue的民宿管理平台设计与实现 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringbootMybatis工具&#xff1a;IDEA、Maven、Navicat 系统展示 用户登录 首页 民宿信息 后台登录 后台首页 用户管理 商家管理 民宿信息管理 房间类型管理 …