大数据计算引擎中的Calcite

1.Calcite介绍

Calcite是一个动态数据库管理框架,具备数据库管理系统的功能
Calcite具备SQL解析、校验、优化、生成、连接查询等功能
Calcite能够为不同平台和数据源提供统一的查询引擎

2.Calcite能力

比如,对于HBase而言,没有SQL查询的能力,但是具备数据管理和数据存储的能力
对于ES而言,它也不具备SQL查询的能力,但是具备数据管理和数据存储的能力

也就是说,对于常见的数据库管理系统,都会具备(上图中灰色部分)数据管理和数据存储的能力,可能不具备SQL查询的能力。
可以通过Calcite为它们赋予SQL查询的能力,Calcite具备(上图中绿色部分)查询语言、查询优化、查询执行的能力。

Calcite在设计之初就确定了只关注和实现上图中绿色部分,而把灰色部分留给了各个外部的存储引擎和计算引擎。

由于数据的多样性,通常灰色部分是比较复杂的,Calcite抛弃了灰色部分,更加专注地实现上层通用的模块。

3.Calcite核心功能

完整的数据库管理系统分为 查询语言、查询优化、查询执行、数据管理、数据存储 5个模块
Calcite专注于实现上层3个通用模块
Calcite功能模块的划分足够合理、独立,使用时不需要完整集成3个模块,可以单独引用某一个模块

4.Calcite集成

上图展示了不同大数据框架对Calcite的引用情况

对Hive而言,Hive的 JDBC Driver 和 SQL Parser and Validator 都是自己实现的,只用到了Calcite的优化模块 Relational Algebra
对Flink而言,FlinkSQL的 JDBC Driver、SQL Parser and Validator、 Relational Algebra 都使用了Calcite进行实现

5.Calcite特性

支持标准SQL语言,可以通过自定义语法兼容多种特殊引擎语法
通过适配器,可以支持连接任何数据源
支持对SQL进行解析,并进行优化
支持物化视图
支持流式查询

6.SQL引擎之旅

提交一条SQL查询后,SQL会经历怎样的处理流程呢?
会经历 解析 -> 校验 -> 优化 -> 执行

Parser:Calcite通过 Java CC 将 SQL 解析成未校验的抽象语法树AST

Validate:检验Parser产生的抽象语法树是否合法,如验证 结构Schema、字段Field、函数是否存在、格式是否正确,验证完成之后生成逻辑执行计划RelNode树

Optimize:优化逻辑执行计划RelNode树,优化主要分为两类:RBO和CBO,优化后将其转换为物理执行计划

Execute:将物理执行计划转换成为特定平台的执行程序

7.Calcite相关组件

Catalog:定义SQL语义相关的元数据和命名空间,其实就是表和字段的一些元数据信息

SQL Parser 解析器:解析SQL,将其转换为抽象语法树AST

SQL Validator 校验器:通过Catalog里面存储的元数据信息,来校验抽象语法树AST,验证抽象语法树所查询的表、字段是不是存在

Query Optimizer 优化器:将抽象语法树转换为逻辑执行计划,并对其进行优化

SQL Generator 生成器:反向将执行计划转换为SQL语句 或 其他执行程序

8.Calcite架构图

Operator Expressions <—> Query Optimizer:接受原始的查询计划,输出优化后的查询计划

Metadata Providers:提供元数据,元数据就是一些Catalog信息。
提供的不是校验SQL需要的库、表、字段、Schema信息,而是是针对优化规则所需要用到的统计信息,比如表里面有多少个分区,表数据有多少个行,表的数据量有多少

Pluggable Rules:优化规则

根据统计信息和优化规则运用关系代数,关系演算这些等价关系,进行执行计划的优化

虚线:Calcite可以扩展的部分,可以与外部系统进行连接

桔色框:可以理解为外部系统,桔色框与蓝色框有虚线的连接,也就是说,桔色框可以扩展三个蓝色框,能够为优化器提供更加准确的元数据信息,更加符合的优化规则,来利用Calcite优化器产生最优的查询计划

以Hive为例,Hive只用了Calcite的优化能力,Hive MetaStore作为元数据的提供方,Hive为Calcite优化器提供了自己外部的元数据,优化规则,以及生成的Operator Expressions

这张架构图从上往下,就可以与SQL的处理流程关联起来:

  1. 用户通过JDBC Client提交一条SQL
  2. Calcite首先对SQL进行解析和验证,将SQL转换为抽象语法树
  3. 将抽象语法树转换为逻辑执行计划,在图中表现为Operator Expressions
  4. 优化器根据生成的逻辑执行计划和外部提供的统计信息、优化规则,对逻辑执行计划进行优化,生成性能比较好的逻辑执行计划
  5. 转换为物理执行计划

从图中可以看出,Calcite最核心的部分就是优化器,优化器需要三部分的输入,分别为优化前的逻辑执行计划、统计信息、优化的匹配规则

Calcite内置了上百种优化规则来对关系表达式进行优化,同时也支持自定义一些优化规则

9. Calcite集成

Calcite的使用非常灵活,可以使用Calcite的全部功能,也可以使用Calcite的部分功能。比如可以只使用Calcite的解析功能,或者只使用Calcite的优化功能,所以对于Calcite的使用一般有这两种场景:

  1. 使用Calcite的全部功能

在这张图中,Calcite作为独立运行的进程,后台通过适配器与外部存储系统进行连接,前台通过JDBC接口,使用SQL语言和用户进行交互

在这个场景中,Calcite作为一个中间件,为一些没有或缺乏SQL查询语言的存储系统,比如HBase,Kafka,ES,Redis等,提供SQL查询语言

Calcite可以在内部将用户提交的查询进行优化,运行在自己的进程里面,在优化的过程中,将用户的查询转换成对应数据存储所需要的查询,下推到对应的数据系统进行查询,查询完成之后再将查询结果返回给用户

  1. 使用Calcite的部分功能

Calcite作为一个嵌入式的组件运行在查询引擎里

可以看到图中,中间是一个数据处理系统,它只应用了Calcite的一个或两个核心功能,查询引擎自己连接后台的数据源,使用自己的集群,用分布式的形式去进行查询,也就是说,查询引擎能够自己获取数据和执行查询,它只需要Calcite来提供查询语言和优化查询的能力,比如Hive、Spark、Flink等等

以Flink为例,Flink有多种算子,可以连接多种异构的数据源,用于数据的获取,Flink自己就是一个计算引擎,能够自己去读取数据,计算数据,Flink有丰富的算子可以将数据进行过滤,放大,缩小,变形等,用于各种各样的计算需求

但是它需要一种对用户友好的,对于流批数据语义统一的查询语言,便于用户来编写查询,所以引入了Calcite,通过Calcite,将SQL转换成执行计划,转换成Flink的作业图,让用户的SQL以最小的代价运行在Flink的集群中

这种场景是Calcite最受欢迎,最擅长的场景。相比于连接数据源,Calcite更擅长的是制造查询语言,解析查询,查询优化

上图就是在第二种集成场景下,Calcite和Data processing System的交互过程:

  1. 用户提交一条SQL,SQL经过Calcite进行处理,生成逻辑执行计划
  2. 对执行计划进行优化,优化就要依赖于计算引擎提供的一些信息,包括新算子替换、优化规则、元数据,通过这三类数据结合Calcite本身的优化能力,产出优化后的逻辑执行计划
  3. 转换为计算引擎支持的查询步骤,对数据进行查询

计算引擎只引用了Calcite对SQL处理的能力

10. SQL解析

SQL解析包含三个过程:词法分析、语法分析、输出抽象语法树
SQL解析是将一个输入的字符串,变换成描述这个字符串的“结构体”,这个结构体是能够准确被计算机识别的

  1. 词法分析
  • 词法分析就是按照定义好的词法,将输入的字符集转换为单词

  • 先对待解析的格式进行初始的定义,比如,abc认定为标识符,'abc’认定为字符串,123认定为数值,select、from认定为关键字

  • 根据规定好的初始定义,将SQL转换成对应的词法:

  1. 语法分析

经过词法解析,得到了一系列的单词,得到单词后,就可以进行语法分析了

也就是说,词法分析的结果作为语法分析的输入,语法分析在词法分析的基础之上,来判断用户输入的单词是不是符合语法的逻辑

语法分析之后得到抽象语法树,抽象语法树是用户输入SQL语句的树形表现形式

树上的每一个节点,都是词法分析的一个单词,树的结构体现了语法

抽象语法树是随语法分析过程构造的,当语法分析正常结束以后,语法分析器就会输出一颗抽象语法树,用户的输入和抽象语法树的结构是一一对应的

自此,用户输入的SQL也就会变成一个结构体,也就是抽象语法树,如下图所示:

  1. 语义分析

接下来,就可以根据生成的抽象语法树来理解SQL想要干什么,语义分析是SQL解析当中最为复杂,最有难度的一步,涉及到SQL的标准、SQL的优化等等。如果想要转换为MapReduce程序,还需要理解MapReduce相关的概念

SQL的语义分析分为两大块:逻辑分析,物理分析

逻辑分析基本上是一个纯代数的分析过程,与底层的分布式环境无关
物理分析是将逻辑分析的结果进行一些变换,与底层的执行环境有密切的关系

SQL执行顺序(面试常见),如图所示,按照标号顺序执行:

  1. 逻辑执行计划

SQL算子是SQL执行时不可拆分的单位

语义分析会根据抽象语法树及元信息构建 RelNode 树,也就是最初版本的逻辑查询计划
(RelNode树就是逻辑查询计划。RelNode树是由一系列RelNode节点组成的树状结构,每个RelNode节点表示一个逻辑操作,如扫描表、投影、过滤等。RelNode树描述了查询的逻辑结构)

一个逻辑查询计划实际上就是由这些查询算子组成的有向无环图。在这个有向无环图中,每一个算子都描述了SQL操作中的不同动作,由算子组成的有向无环图描述了数据流的方向

11.SQL优化

  1. 优化逻辑执行计划

优化方式分类:

RBO:基于规则优化。基于已经制定好的优化规则,对关系表达式进行转换,生成最优的执行计划。是一种经验式的优化方法
CBO:基于代价优化。根据优化规则对关系表达式进行转换,生成多个执行计划,根据统计信息和代价模型计算出每个执行计划的代价,从中挑选代价最小的执行计划作为最终的执行计划

CBO明显优于RBO,因为RBO只认规则,对于数据并不敏感。在实际中,数据的量级会严重影响同样SQL的性能,所以仅仅通过RBO生成的执行计划很有可能不是最优的
而CBO依赖于统计信息和代价模型,统计信息的准确与否,代价模型是否合理,都会影响CBO选择最优的执行计划

新的优化方式:
动态CBO:在执行计划生成的过程当中,根据下一步代价动态优化
随着大数据技术的发展,静态CBO没有办法满足优化的需要了,因为静态的统计信息没有办法提供准确的参考。在执行计划生成的过程当中,动态地进行统计才能得到最优的执行计划

优化规则

无论RBO还是CBO,实际上都是对逻辑执行计划应用一些优化规则。通过优化规则对关系表达式进行等价转换,寻找最优的执行计划

常见的CBO优化规则有:列裁剪、投影消除、最大最小消除、谓词下推等

逻辑算子

从上图可以看到,涉及到三个逻辑算子,分别是Projection、Selection、DataSource

DataSource:数据源,也就是SQL语句中的表
Selection:选择,where后的过滤条件
Projection:投影,指搜索的列
Join:连接,inner join、left join、right join等
Sort:排序,无序的数据通过这个算子处理后,输出有序的数据
Aggregation:聚合,按照某些列进行分组,进行一些聚合操作

物理算子

有逻辑算子,肯定就有物理算子,对应的就是物理执行计划

物理算子和逻辑算子的不同在于,一个逻辑算子可能对应多种物理算子
比如,Join的物理算子有Hash Join、MergeSort Join等。DataSource可以扫描全表,也可以利用索引读取数据。都对应着多个物理算子

数据查询慢,需要加索引,要确保逻辑查询计划所对应的物理查询计划要走我们加的索引,这样才能提高查询速度。
也就是说,DataSource逻辑算子生成物理执行计划的时候,对应的物理算子要走索引才行

12.RBO优化规则

  1. 列裁剪

对于没有用到的列,没有必要读取它们的数据去浪费IO。列裁剪通过只读取需要的数据减少IO操作来达到优化的目的

列裁剪的算法就是自顶向下遍历一遍所有的算子,
某个算子需要用到的列=自己需要的列+父节点需要的列

这样就可以得到整个SQL语句需要的列,读取数据的时候只读取需要的列即可

  1. 投影消除

投影消除是把不必要的Projection给消除掉

Projection算子投影的列跟子节点的输出列一样,那么这个投影操作就可以消除
例:select a,b from t1
如果t1中只有a,b两列,也就是如果DataSource的输出和它上层的Projection算子需要投影的列是一样的,执行TableSCAN之后就没有必要再做一次Projection操作了,上层的Projection是可以被消除掉的

如果Projection的子节点还是Projection,那么可以被消除
例:select a from(select a,b,c from t1)t2
这条语句有两个Projection,分别是最上层的Projection,只含有a一列,它的子节点Projection,含有a,b,c三列
Projection a,b,c就是一个废操作,可以被消除掉

  1. 常量折叠和常量传播

常量折叠:编译优化时,能够计算出结果的表达式替换为常量
例:select * from t1 where a>3+5
3+5可以由常量进行替换,替换成a>8

常量传播:编译优化时,将能够计算出结果的变量替换为常量
常量折叠处理不了变量被多次赋值的情况
例:where a>5 and a<4
我们一眼就能看出来,上述情况不存在,但没有经过优化的SQL会进行全表的扫描,所以需要对它进行处理,对a>5和a<4进行条件常量传播,消除无用的节点,判断是否存在结果

  1. 谓词下推

将外层查询where子句中的谓词移入到所包含的较低层次的查询块,提前进行数据过滤,更好的使用索引

例:

select * 
from t1,t2
where t1.a > 3
and t2.b > 5

假设t1表和t2表都有100条数据,如果不进行谓词下推,就需要把t1表和t2表做笛卡尔积,再根据条件进行过滤。如果进行谓词下推,则是先过滤数据,再做笛卡尔积

尽量把过滤条件下推到子节点上,这样可以避免访问很多的数据,达到优化效果

对于DataSource算子,就直接将过滤条件推给各个DataSource算子。对于Join算子,收集连接的条件,区分出哪些是来自于左节点,哪些是来自右节点,将这些条件分别向左右节点进行下推

谓词下推也是有边界的,不能一直对谓词进行下推,不能推过limit节点。先Selection后limit n 和 先limit n后Selection的结果是不一样的

13.SQL优化执行过程

  1. RBO执行过程

Transformation:遍历关系表达式,满足特定的优化规则进行转换
Build Physical Plan:把优化过的逻辑执行计划转换成物理执行计划

  1. CBO执行过程

Exploration:根据优化规则进行等价转换,生成多个逻辑执行计划
Build Physical Plan:生成多个物理执行计划
Find Best Plan:计算各个物理执行计划的Cost,选出Cost最小的执行计划

  1. 动态CBO

CBO:先生成执行计划,后统计代价
动态CBO:边生成执行计划,边统计代价

14.CBO核心步骤

  1. 采集数据源的基本信息:包括表级别指标和列级别指标

每个节点输出的数据大小、数据条数、数据类型、数据分布,这是表级别指标
列的类型,以及每一列的最大值,最小值,每一列的长度,这是列级别指标

通过采集这些指标来计算每个算子的代价,去评估到底需要耗费多少资源

支持CBO的系统一般都实现了相关信息统计的方法,如Hive Matastore
如orc列式存储格式也存储了统计信息

  1. 定义核心算子的基数推导规则:根据统计信息预估节点代价

推导规则是在当前子节点的统计信息基础之上,来计算父节点相关统计信息,对于不同的算子,推导规则肯定是不一样的。根据表级别的指标和列级别的指标做一个预估,进行代价的计算

  1. 核心算子实际代价计算:从 CPU Cost 和 IO Cost 两方面分析实际代价

根据统计信息和推导规则所预估出的数据的条数,数据的大小,数据的分布等,来计算出各个执行计划执行的成本,执行成本就从CPU和IO两个维度进行体现

  1. 选择最优的执行路径:根据计算代价选择最优的执行路径

实际选择的并不一定是代价最小的执行路径,原因是可执行的执行路径太多了,如果把所有的路径都计算一遍,需要耗费大量的时间,SQL的优化也就没有意义了
CBO就是选择一条相对稳定而且代价较小的执行路径,这样就能在很短的时间内,达到SQL的优化目的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/828924.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ 并发编程 - 入门

目录 写在前面 并发编程&#xff0c;启动&#xff01; 写在前面 计算机的并发指在单个系统里同时执行多个独立的任务。 在过去计算机内只有一个处理器时并发是通过快速的切换进程上下文所实现的&#xff0c;而现在计算机已经步入了多核并发时代&#xff0c;所以多个进程的并…

号卡流量卡分销推广系统源码

这是一个多功能的流量卡推广分销系统PHP源码&#xff0c;它是一套完善的、功能丰富的号卡分销系统&#xff0c;拥有多个接口&#xff0c;包括运营商接口&#xff0c;以及无限三级代理。这是目前市面上最优雅的号卡系统&#xff0c;没有之一。 软件架构说明&#xff1a; 环境要求…

239. 滑动窗口最大值/76. 最小覆盖子串

239. 滑动窗口最大值 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1&#xff1a; 输入&#xff1a;nums [1,3,-…

python获取文件路径

文件&#xff1a;allpath_parameter.py # 获取当前目录路径 # current_dir os.getcwd() # 获取当前目录路径 realpath00 os.path.abspath(os.path.join(os.path.dirname(os.path.split(os.path.realpath(__file__))[0]), .)) print(realpath00)# 获取当前目录的上级目录路…

深圳智能抄表:现代城市管理的新篇章

1.行业背景和创新 深圳&#xff0c;做为中国最有创新力的城市之一。智能抄表是这处城市在公共服务领域的一次重大自主创新&#xff0c;是利用物联网技术、大数据和云计算等先进技术&#xff0c;改变了传统的手工制作抄水表方法&#xff0c;提高了效率&#xff0c;减少了偏差&a…

第一篇:Python简介:开启你的编程之旅

Python简介&#xff1a;开启你的编程之旅 在这个系列文章中&#xff0c;我将带领大家深入了解Python——一个极具魅力的编程语言。如果你对编程感兴趣&#xff0c;想要掌握一门既实用又强大的语言&#xff0c;那么Python无疑是一个绝佳的选择。本篇文章是这个系列的序章&#…

vue3 h5模板

vue3的h5模板 基于vue3tsvantrem的h5模板 觉得帮到你了就给个start

C++之通俗易懂学模版

目录 一、了解什么是泛性编程 二、模版 1.函数模版 1.1 函数模板概念 1.2 函数模板格式 1.3 函数模板的原理 1.4 函数模板的实例化 1.5 模板参数的匹配原则 2.类模板 2.1 类模板的定义格式 2.2 类模板的实例化 3. 非类型模板参数 4. 模板的特化 4.1 概念 4.2 …

java:Http协议和Tomcat

HTTP协议 Hyper Text Transfer Protocol 超文本传输协议,规定了浏览器和服务器之间数据传输的规则 特点: 基于TCP协议,面向连接,安全 基于请求响应模型:一次请求对应一次响应 HTTP协议是无状态协议,对事务的处理没有记忆能力,每次请求-响应都是独立的. 优点 速度较快 …

OceanBase开发者大会实录 - 阳振坤:云时代的数据库

本文来自2024 OceanBase开发者大会&#xff0c;OceanBase 首席科学家阳振坤的演讲实录——《云时代的数据库》。完整视频回看&#xff0c;请点击这里 >> 在去年的开发者大会中&#xff0c;我跟大家分享了我对数据库产品和技术一些看法&#xff0c;包括单机分布式一体化&…

书生·浦语 大模型(学习笔记-9)OpenCompass 大模型评测实战

目录 一、评测实现双赢 二、评测遇到的问题 三、如何评测大模型&#xff08;大概总结4大类方法&#xff09; 四、评测工具链及流水线 五、实战评测 GPU的环境安装 查看支持的数据集和模型 启动评测(会缺少protibuf库&#xff0c;提前安装&#xff09; 测评结果 一、评…

Android Studio实现内容丰富的安卓校园超市

获取源码请点击文章末尾QQ名片联系&#xff0c;源码不免费&#xff0c;尊重创作&#xff0c;尊重劳动 项目代号168 1.开发环境 后端用springboot框架&#xff0c;安卓的用android studio开发 android stuido3.6 jdk1.8 idea mysql tomcat 2.功能介绍 安卓端&#xff1a; 1.注册…

【R语言简介】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…

小程序AI智能名片S2B2C商城系统:实现分销模式的四大要件深度解析

在当前的电商领域&#xff0c;小程序AI智能名片S2B2C商城系统正以其独特的分销模式&#xff0c;引领着行业创新的风潮。这种模式的成功&#xff0c;离不开四大核心要件&#xff1a;商品、机制、平台和运营。接下来&#xff0c;我们将对这四大要件进行深度解析。 首先&#xff0…

直播美颜SDK工具解析:揭秘实时视频美颜处理技术

今天&#xff0c;小编将与大家共同探讨直播美颜SDK工具背后的实时视频美颜处理技术&#xff0c;揭秘其原理和工作机制。 一、美颜算法的发展 在美颜算法的发展过程中&#xff0c;深度学习技术的应用起到了至关重要的作用。经过大量、多次的不断重复训练&#xff0c;美颜的算法…

pycharm编辑器------快捷键

pycharm编辑器基础快捷键 上下文操作 01PyCharm 有数百个上下文相关操作&#xff0c;可以帮助您转换、改进和修正代码。按 AIt Enter 以调用“显示上下文操作"。 02我们来应用第一个快速修复:移除形参。 03您几乎可以在任何上下文中调用"显示上下文操作"。我们…

springboot实现gpt的eventstream案例

springboot实现gpt的eventstream案例 一、maven坐标 引入webflux依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-webflux</artifactId></dependency>二、democontroller package org.e…

如何利用交易形态的失败进行现货黄金?

进行现货黄金理财&#xff0c;除了需要投资者对黄金投资有热情之外&#xff0c;有方法也是很重要的&#xff0c;光有热情而没有技术&#xff0c;我们的资金很可能会成为其他人的囊中之物。但如果有了现货黄金理财的技术&#xff0c;情况就可能扭转过来。下面我们就从买入的角度…

分享基于鸿蒙OpenHarmony的Unity团结引擎应用开发赛

该赛题旨在鼓励更多开发者基于OpenHarmony4.x版本&#xff0c;使用团结引擎创造出精彩的游戏与应用。本次大赛分为“创新游戏”与“创新3D 化应用”两大赛道&#xff0c;每赛道又分“大众组”与“高校组”&#xff0c;让不同背景的开发者同台竞技。无论你是游戏开发者&#xff…

数据库并发控制思维导图+大纲笔记

思维导图 大纲笔记 多用户数据库系统 定义 允许多个用户同时使用的数据库系统特点 在同一时刻并发运行的事务数可达数百上千个多事务执行方式 事务串行执行交叉并发方式 单处理机系统同时并发方式 多处理机系统事务并发执行带来的问题 产生多个事务同时存取同一数据的情况可能…