C++之通俗易懂学模版

目录

一、了解什么是泛性编程 

二、模版 

1.函数模版

1.1 函数模板概念

1.2 函数模板格式

1.3  函数模板的原理

1.4  函数模板的实例化

1.5 模板参数的匹配原则

2.类模板

2.1 类模板的定义格式

2.2 类模板的实例化

3. 非类型模板参数

 4. 模板的特化

4.1 概念

4.2 函数模板特化

4.3 类模板特化

4.3.1 全特化

 4.3.2 半特化

3. 模板总结


模板是C++中非常重要的特性之一,它们使得代码更具有通用性、灵活性和性能,并且能够提高开发效率和代码质量,是我们必修的一门“武功秘籍”

一、了解什么是泛性编程 

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础

平时我们在编写代码的时候,都要十分在意函数或是类的参数类型,整形就只能调用整形的函数 

浮点类型就只能调用浮点类型的函数,而泛型编程是编译一种通用的代码,与类型无关

下面举个例子:

平时我们怎么写一个交换函数?是不是像下面这样:

void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}
void Swap(double& left, double& right)
{double temp = left;left = right;right = temp;
}
void Swap(char& left, char& right)
{char temp = left;left = right;right = temp;
}

因为数据类型有很多种,我们不知道要传的数据是什么类型,所以我们会用函数重载的方式写多个重载函数,但是缺点也很明显

1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数,十分的麻烦和冗余

2. 代码的可维护性比较低,一个出错可能所有的重载均出错

所以我们想能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?

就像工厂里浇筑钢水炼制一样,只要有一个模具,就能添加不同材料炼制不同颜色和材质的产品

如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件 (即生成具体类型的代码),那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。

二、模版 

1.函数模版

1.1 函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。

1.2 函数模板格式

template<typename T1, typename T2,......,typename Tn>

返回值类型 函数名(参数列表){}

template<typename T>
void Swap(T& left, T& right)
{T temp = left;left = right;right = temp;
}

注意:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)

1.3  函数模板的原理

我们此时再来看看如何解决上面Swap的问题,大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生 产淘汰掉了很多手工产品。本质是什么,重复的工作交给了机器去完成。有人给出了论调:懒人创造世界 

(懒不是傻懒,如果你想少干,就要想出懒的方法。要懒出风格,懒出境界)

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器 

在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供 调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然 后产生一份专门处理double类型的代码,对于字符类型也是如此

1.4  函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。

模板参数实例化分为:隐式实例化和显式实例化。

1. 隐式实例化:让编译器根据实参推演模板参数的实际类型

template<class T>
T Add(const T& left, const T& right)
{return left + right;
}
int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1, a2);Add(d1, d2);Add(a1, d1);/*该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,编译器无法确定此处到底该将T确定为int 或者 double类型而报错注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅*/// 此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化Add(a1, (int)d1);return 0;
}

对于Add(a1,d1),该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型,通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,
编译器无法确定此处到底该将T确定为int 或者 double类型而报错
注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅

此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化

	Add(a1, (int)d1);

2. 显式实例化:在函数名后的<>中指定模板参数的实际类型 

int main(void)
{int a = 10;double b = 20.0;// 显式实例化Add<int>(a, b);return 0;
}

如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错 

1.5 模板参数的匹配原则

 1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数

// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{return left + right;
}
void Test()
{Add(1, 2); // 与非模板函数匹配,编译器不需要特化Add<int>(1, 2); // 调用编译器特化的Add版本
}

2. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板(有现成的吃现成的)

// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{return left + right;
}
void Test()
{Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}

3. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

总结一下模版和函数的区别:

1.模版传递的是类型,且在编译时传递,没传就是默认的
2. 函数传递的是变量或对象,在运行时传递

 

2.类模板

2.1 类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{// 类内成员定义
};
// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:Vector(size_t capacity = 10): _pData(new T[capacity]), _size(0), _capacity(capacity){}// 使用析构函数演示:在类中声明,在类外定义。~Vector();void PushBack(const T& data);void PopBack();// ...size_t Size() { return _size; }T& operator[](size_t pos){assert(pos < _size);return _pData[pos];}private:T* _pData;size_t _size;size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{if (_pData)delete[] _pData;_size = _capacity = 0;
}

注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具

          类模板中函数放在类外进行定义时,需要加模板参数列表

2.2 类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<> 中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。

// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;

3. 非类型模板参数

模板参数分类类型形参与非类型形参。

类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称。

非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用

namespace bite
{// 定义一个模板类型的静态数组template<class T, size_t N = 10>class array{public:T& operator[](size_t index) { return _array[index]; }const T& operator[](size_t index)const { return _array[index]; }size_t size()const { return _size; }bool empty()const { return 0 == _size; }private:T _array[N];size_t _size;};
}

注意:

1. 浮点数、类对象以及字符串是不允许作为非类型模板参数的。

2. 非类型的模板参数必须在编译期就能确认结果。

3.常数参数只能是整形常量 

 4. 模板的特化

4.1 概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理

比如:实现了一个专门用来进行小于比较的函数模板

// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{return left < right;
}
int main()
{cout << Less(1, 2) << endl; // 可以比较,结果正确Date d1(2022, 7, 7);Date d2(2022, 7, 8);cout << Less(d1, d2) << endl; // 可以比较,结果正确Date* p1 = &d1;Date* p2 = &d2;cout << Less(p1, p2) << endl; // 可以比较,结果错误return 0;
}
// 此处省略的date日期类的代码,理解为比较日期就行

可以看到,Less绝对多数情况下都可以正常比较,但是在特殊场景下就得到错误的结果。

上述示例中,p1指 向的d1显然小于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指 针的地址,这就无法达到预期而错误。

此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化与类模板特化。

4.2 函数模板特化

函数模板的特化步骤:

1. 必须要先有一个基础的函数模板

2. 关键字template后面接一对空的尖括号<>

3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型

4. 函数形参表: 必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误

// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{return left < right;
}
// 对Less函数模板进行特化
template<>
bool Less<Date*>(Date* left, Date* right)
{return *left < *right;
}
int main()
{cout << Less(1, 2) << endl;Date d1(2022, 7, 7);Date d2(2022, 7, 8);cout << Less(d1, d2) << endl;Date* p1 = &d1;Date* p2 = &d2;cout << Less(p1, p2) << endl; // 调用特化之后的版本,而不走模板生成了return 0;
}

注意:一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出。

如:

bool Less(Date* left, Date* right)
{return *left < *right;
}

该种实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给出,因此函数模板不建议特化。

4.3 类模板特化

4.3.1 全特化

全特化即是将模板参数列表中所有的参数都确定化

template<class T1, class T2>
class Data
{
public:Data() { cout << "Data<T1, T2>" << endl; }
private:T1 _d1;T2 _d2;
};
template<>
class Data<int, char>
{
public:Data() { cout << "Data<int, char>" << endl; }
private:int _d1;char _d2;
};
void TestVector()
{Data<int, int> d1;Data<int, char> d2;
}
 4.3.2 半特化

偏特化:任何针对模版参数进一步进行条件限制设计的特化版本。

比如对于以下模板类:

template<class T1, class T2>
class Data
{
public:Data() { cout << "Data<T1, T2>" << endl; }
private:T1 _d1;T2 _d2;
};

偏特化有以下两种表现方式:

1.部分特化 将模板参数类表中的一部分参数特化

// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:Data() { cout << "Data<T1, int>" << endl; }
private:T1 _d1;int _d2;
};

2.参数更进一步的限制 偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本。

//两个参数偏特化为指针类型
template <typename T1, typename T2>
class Data <T1*, T2*>
{
public:Data() { cout << "Data<T1*, T2*>" << endl; }private:T1 _d1;T2 _d2;
};
//两个参数偏特化为引用类型
template <typename T1, typename T2>
class Data <T1&, T2&>
{
public:Data(const T1& d1, const T2& d2): _d1(d1), _d2(d2){cout << "Data<T1&, T2&>" << endl;}private:const T1& _d1;const T2& _d2;
};
void test2()
{Data<double, int> d1; // 调用特化的int版本Data<int, double> d2; // 调用基础的模板 Data<int*, int*> d3; // 调用特化的指针版本Data<int&, int&> d4(1, 2); // 调用特化的指针版本
}

匹配顺序:能匹配就优先全特化,然后偏特化 

5. 模板总结

优点: 1. 模板复用了代码,节省资源,更快的迭代开发,C++的标准模板库(STL)因此而产生

            2. 增强了代码的灵活性

缺点:1. 模板会导致代码膨胀问题,也会导致编译时间变长

           2. 出现模板编译错误时,错误信息非常凌乱,不易定位错误

总之最后,模版的本质是:

本来应该由你写的多份代码,现在不需要你重复写了,你只需要提供一个模版,编译器根据你的实例化(有一种机器半自动化帮你写代码的感觉),帮你写出来这是最精华的一句话

相信如果你能真正理解这句话,也就能真正理解模版了

感谢阅读

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/828916.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java:Http协议和Tomcat

HTTP协议 Hyper Text Transfer Protocol 超文本传输协议,规定了浏览器和服务器之间数据传输的规则 特点: 基于TCP协议,面向连接,安全 基于请求响应模型:一次请求对应一次响应 HTTP协议是无状态协议,对事务的处理没有记忆能力,每次请求-响应都是独立的. 优点 速度较快 …

OceanBase开发者大会实录 - 阳振坤:云时代的数据库

本文来自2024 OceanBase开发者大会&#xff0c;OceanBase 首席科学家阳振坤的演讲实录——《云时代的数据库》。完整视频回看&#xff0c;请点击这里 >> 在去年的开发者大会中&#xff0c;我跟大家分享了我对数据库产品和技术一些看法&#xff0c;包括单机分布式一体化&…

书生·浦语 大模型(学习笔记-9)OpenCompass 大模型评测实战

目录 一、评测实现双赢 二、评测遇到的问题 三、如何评测大模型&#xff08;大概总结4大类方法&#xff09; 四、评测工具链及流水线 五、实战评测 GPU的环境安装 查看支持的数据集和模型 启动评测(会缺少protibuf库&#xff0c;提前安装&#xff09; 测评结果 一、评…

Android Studio实现内容丰富的安卓校园超市

获取源码请点击文章末尾QQ名片联系&#xff0c;源码不免费&#xff0c;尊重创作&#xff0c;尊重劳动 项目代号168 1.开发环境 后端用springboot框架&#xff0c;安卓的用android studio开发 android stuido3.6 jdk1.8 idea mysql tomcat 2.功能介绍 安卓端&#xff1a; 1.注册…

【R语言简介】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…

小程序AI智能名片S2B2C商城系统:实现分销模式的四大要件深度解析

在当前的电商领域&#xff0c;小程序AI智能名片S2B2C商城系统正以其独特的分销模式&#xff0c;引领着行业创新的风潮。这种模式的成功&#xff0c;离不开四大核心要件&#xff1a;商品、机制、平台和运营。接下来&#xff0c;我们将对这四大要件进行深度解析。 首先&#xff0…

直播美颜SDK工具解析:揭秘实时视频美颜处理技术

今天&#xff0c;小编将与大家共同探讨直播美颜SDK工具背后的实时视频美颜处理技术&#xff0c;揭秘其原理和工作机制。 一、美颜算法的发展 在美颜算法的发展过程中&#xff0c;深度学习技术的应用起到了至关重要的作用。经过大量、多次的不断重复训练&#xff0c;美颜的算法…

pycharm编辑器------快捷键

pycharm编辑器基础快捷键 上下文操作 01PyCharm 有数百个上下文相关操作&#xff0c;可以帮助您转换、改进和修正代码。按 AIt Enter 以调用“显示上下文操作"。 02我们来应用第一个快速修复:移除形参。 03您几乎可以在任何上下文中调用"显示上下文操作"。我们…

springboot实现gpt的eventstream案例

springboot实现gpt的eventstream案例 一、maven坐标 引入webflux依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-webflux</artifactId></dependency>二、democontroller package org.e…

如何利用交易形态的失败进行现货黄金?

进行现货黄金理财&#xff0c;除了需要投资者对黄金投资有热情之外&#xff0c;有方法也是很重要的&#xff0c;光有热情而没有技术&#xff0c;我们的资金很可能会成为其他人的囊中之物。但如果有了现货黄金理财的技术&#xff0c;情况就可能扭转过来。下面我们就从买入的角度…

分享基于鸿蒙OpenHarmony的Unity团结引擎应用开发赛

该赛题旨在鼓励更多开发者基于OpenHarmony4.x版本&#xff0c;使用团结引擎创造出精彩的游戏与应用。本次大赛分为“创新游戏”与“创新3D 化应用”两大赛道&#xff0c;每赛道又分“大众组”与“高校组”&#xff0c;让不同背景的开发者同台竞技。无论你是游戏开发者&#xff…

数据库并发控制思维导图+大纲笔记

思维导图 大纲笔记 多用户数据库系统 定义 允许多个用户同时使用的数据库系统特点 在同一时刻并发运行的事务数可达数百上千个多事务执行方式 事务串行执行交叉并发方式 单处理机系统同时并发方式 多处理机系统事务并发执行带来的问题 产生多个事务同时存取同一数据的情况可能…

本地生活服务平台哪家强,怎么申请成为服务商?

当下&#xff0c;本地生活服务已经成为了多家互联网大厂布局的重要板块&#xff0c;在巨大的市场需求和强大的资本加持下&#xff0c;不少人都看到了本地生活服务平台广阔的前景和收益空间。在此背景下&#xff0c;许多普通人都跃跃欲试&#xff0c;想要成为本地生活服务商&…

Android --- SharedPreferences

SharedPreferences 对应sp文件的接口 使用 SharedPreferences API可以保存的相对较小键值对集合。SharedPreferences 对象指向包含键值对的文件&#xff0c;并提供读写这些键值对的简单方法。每个 SharedPreferences 文件均由框架进行管理&#xff0c;可以是私有文件&#xff…

Golang | Leetcode Golang题解之第52题N皇后II

题目&#xff1a; 题解&#xff1a; func totalNQueens(n int) (ans int) {columns : make([]bool, n) // 列上是否有皇后diagonals1 : make([]bool, 2*n-1) // 左上到右下是否有皇后diagonals2 : make([]bool, 2*n-1) // 右上到左下是否有皇后var backtrack func(int)…

多线程(安全 同步 线程池)

线程安全问题 多线程给我们的程序带来了很大性能上的提升&#xff0c;但是也可能引发线程安全问题线程安全问题指的是当多个线程同时操作同一个共享资源的时候&#xff0c;可能会出现的操作结果不符预期问题 取钱的线程安全问题 线程安全问题出现的原因&#xff1f; 存在多线…

JAVA实现easyExcel动态生成excel

添加pom依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>2.2.6</version> </dependency><!--工具类--> <dependency><groupId>cn.hutool</groupId><…

OSPF的协议特性

路由汇总的概念 l 路由汇总&#xff08; Route Aggregation &#xff09;&#xff0c;又称路由聚合&#xff08;Route Summarization&#xff09;&#xff0c;指的是把一组明细路由汇聚成一条汇总路由条目的操作 l 路由汇总能够减少路由条目数量、减小路由表规模&#xff0…

Linux-进程和计划任务管理⭐

目录 一、程序和进程 1.程序 2.进程 3.线程与进程 二、ps查看静态进程信息 1.ps aux 命令 2.ps-静态查看系统进程 3.ps -elf 三、top-查看进程动态信息 四、pgrep查看进程信息 五、pstree-查看进程树 六、控制进程 1.进程启动方式 2.调度启动 3.进程的前后台调…

LeetCode //C - 38. Count and Say Medium Topics Companies

38. Count and Say The count-and-say sequence is a sequence of digit strings defined by the recursive formula: countAndSay(1) “1”countAndSay(n) is the way you would “say” the digit string from countAndSay(n-1), which is then converted into a differen…