C++入门
- 1. 入门
- 0. 本节知识点熟悉目的
- 1. C++关键字(C++98)
- 2. 命名空间
- 2.1 命名空间定义
- 2.2 命名空间使用
- 3. C++输入&输出
- 4. 缺省参数
- 4.1 缺省参数概念
- 4.2 缺省参数分类
- 5. 函数重载
- 5.1 函数重载概念
- 5.2 C++支持函数重载的原理--名字修饰(name Mangling)
- 6. 引用
- 6.1 引用概念
- 6.2 引用特性
- 6.3 常引用
- 6.4 使用场景
- 6.5 传值、传引用效率比较
- 6.5.1 效率比较
- 6.5.2 值和引用的作为返回值类型的性能比较
- 6.6 引用和指针的区别
- 7. 内联函数
- 7.1 概念
- 7.2 特性
- 8. auto关键字(C++11)
- 8.1 类型别名思考
- 8.2 auto简介
- 8.3 auto的使用细则
- 8.4 auto不能推导的场景
- 9. 基于范围的for循环(C++11)
- 9.1 范围for语法
- 9.2 范围for的使用条件
- 10. 指针空值nullptr(C++11)
- 10.1 C++98中的指针空值
1. 入门
0. 本节知识点熟悉目的
- C++是在C的基础之上,容纳进去了面向对象编程思想,并增加了许多有用的库,以及编程范式
等。熟悉C语言之后,对C++学习有一定的帮助,本章节主要目标: -
- 补充C语言语法的不足,以及C++是如何对C语言设计不合理的地方进行优化的,比如:作用
域方面、IO方面、函数方面、指针方面、宏方面等。
- 补充C语言语法的不足,以及C++是如何对C语言设计不合理的地方进行优化的,比如:作用
-
- 为后续类和对象学习打基础。
1. C++关键字(C++98)
- C++总计63个关键字,C语言32个关键字
ps: 下面我们只是看一下C++有多少关键字,不对关键字进行具体的讲解。后面我们学到以后再细讲。
asm | do | if | return | try | continue |
---|---|---|---|---|---|
auto | double | inline | short | typedef | for |
bool | dynamic_cast | int | signed | typeid | public |
break | else | long | sizeof | typename | throw |
case | enum | mutable | static | union | wchar_t |
catch | explicit | namespace | static_cast | unsigned | default |
char | export | new | struct | using | friend |
class | extern | operator | switch | virtual | register |
const | false | private | template | void | true |
const_cast | float | protected | this | volatile | while |
delete | goto | reinterpret_cast |
2. 命名空间
- 在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。
#include <stdio.h>
#include <stdlib.h>
int rand = 10;// C语言没办法解决类似这样的命名冲突问题,所以C++提出了namespace来解决
int main()
{printf("%d\n", rand);return 0;
}
// 编译后后报错:error C2365: “rand”: 重定义;以前的定义是“函数”
2.1 命名空间定义
- 定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{}中即为命名空间的成员。
// bit是命名空间的名字,一般开发中是用项目名字做命名空间名。
// 我们上课用的是bit,大家下去以后自己练习用自己名字缩写即可,如张三:zs
// 1. 正常的命名空间定义
namespace bit
{// 命名空间中可以定义变量/函数/类型int rand = 10;int Add(int left, int right){return left + right;}struct Node{struct Node *next;int val;};
}// 2. 命名空间可以嵌套
// test.cpp
namespace N1
{int a;int b;int Add(int left, int right){return left + right;}namespace N2{int c;int d;int Sub(int left, int right){return left - right;}}
}// 3. 同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
// ps:一个工程中的test.h和上面test.cpp中两个N1会被合并成一个
// test.h
namespace N1
{int Mul(int left, int right){return left * right;}
}
- 注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中。
2.2 命名空间使用
- 命名空间中成员该如何使用呢?
比如:
namespace bit
{// 命名空间中可以定义变量/函数/类型int a = 0;int b = 1;int Add(int left, int right){return left + right;}struct Node{struct Node *next;int val;};
}
int main()
{// 编译报错:error C2065: “a”: 未声明的标识符printf("%d\n", a);return 0;
}
- 命名空间的使用有三种方式:
-
- 加命名空间名称及作用域限定符
int main()
{printf("%d\n", N::a);return 0;
}
-
- 使用using将命名空间中某个成员引入
using N::b;
int main()
{printf("%d\n", N::a);printf("%d\n", b);return 0;
}
-
- 使用using namespace 命名空间名称引入
using namespce N;
int main()
{printf("%d\n", N::a);printf("%d\n", b);Add(10, 20);return 0;
}
3. C++输入&输出
- 新生婴儿会以自己独特的方式向这个崭新的世界打招呼,C++刚出来后,也算是一个新事物,那C++是否也应该向这个美好的世界来声问候呢?我们来看下C++是如何来实现问候的。
#include <iostream>
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中using namespace std;int main()
{cout << "Hello world!!!" << endl;return 0;
}
说明:
-
- 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件以及按命名空间使用方法使用std。
-
- cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含< iostream >头文件中。
-
- <<是流插入运算符,>>是流提取运算符。
-
- 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。C++的输入输出可以自动识别变量类型。
-
- 实际上cout和cin分别是ostream和istream类型的对象,>>和<<也涉及运算符重载等知识,这些知识我们我们后续才会学习,所以我们这里只是简单学习他们的使用。后面我们还有有一个章节更深入的学习IO流用法及原理。
注意: 早期标准库将所有功能在全局域中实现,声明在.h后缀的头文件中,使用时只需包含对应
头文件即可,后来将其实现在std命名空间下,为了和C头文件区分,也为了正确使用命名空间,
规定C++头文件不带.h;旧编译器(vc 6.0)中还支持<iostream.h>格式,后续编译器已不支持,因
此推荐使用+std的方式。
#include <iostream>using namespace std;int main()
{int a;double b;char c;// 可以自动识别变量的类型cin >> a;cin >> b >> c;cout << a << endl;cout << b << " " << c << endl;return 0;
}
// ps:关于cout和cin还有很多更复杂的用法,比如控制浮点数输出精度,控制整形输出进制格式等等。因为C++兼容C语言的用法,这些又用得不是很多,我们这里就不展开学习了。后续如果有需要,我们再配合文档学习。
std命名空间的使用惯例:
std是C++标准库的命名空间,如何展开std使用更合理呢?
-
- 在日常练习中,建议直接using namespace std即可,这样就很方便。
-
- using namespace std展开,标准库就全部暴露出来了,如果我们定义跟库重名的类型/对象/函数,就存在冲突问题。该问题在日常练习中很少出现,但是项目开发中代码较多、规模大,就很容易出现。所以建议在项目开发中使用,像std::cout这样使用时指定命名空间 + using std::cout展开常用的库对象/类型等方式。
4. 缺省参数
4.1 缺省参数概念
缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。
void Func(int a = 0)
{cout << a << endl;
}
int main()
{Func();// 没有传参时,使用参数的默认值Func(10);// 传参时,使用指定的实参return 0;
}
4.2 缺省参数分类
- 全缺省参数
void Func(int a = 10, int b = 20, int c = 30)
{cout << "a = " << a << endl;cout << "b = " << b << endl;cout << "c = " << c << endl;
}
- 半缺省参数
void Func(int a, int b = 10, int c = 20)
{cout << "a = " << a << endl;cout << "b = " << b << endl;cout << "c = " << c << endl;
}
- 注意:
-
- 半缺省参数必须从右往左依次来给出,不能间隔着给。
-
- 缺省参数不能在函数声明和定义中同时出现。
//a.hvoid Func(int a = 10);// a.cppvoid Func(int a = 20)
{
}// 注意:如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那个缺省值。
-
- 缺省值必须是常量或者全局变量
-
- C语言不支持(编译器不支持)
5. 函数重载
-
自然语言中,一个词可以有多重含义,人们可以通过上下文来判断该词真实的含义,即该词被重载了。
-
比如:以前有一个笑话,国有两个体育项目大家根本不用看,也不用担心。一个是乒乓球,一个是男足。前者是“谁也赢不了!”,后者是“谁也赢不了!”。
5.1 函数重载概念
函数重载: 是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数 或 类型 或 类型顺序) 不同,常用来处理实现功能类似数据类型不同的问题。
#include <iostream>using namespace std;// 1、参数类型不同
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
double Add(double left, double right)
{cout << "double Add(double left, double right)" << endl;return left + right;
}// 2、参数个数不同
void f()
{cout << "f()" << endl;
}
void f(int a)
{cout << "f(int a)" << endl;
}// 3、参数类型顺序不同
void f(int a, char b)
{cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{cout << "f(char b, int a)" << endl;
}
int main()
{Add(10, 20);Add(10.1, 20.2);f();f(10);f(10, 'a');f('a', 10);return 0;
}
5.2 C++支持函数重载的原理–名字修饰(name Mangling)
-
为什么C++支持函数重载,而C语言不支持函数重载呢?
-
在C/C++中,一个程序要运行起来,需要经历以下几个阶段:预处理、编译、汇编、链接。
-
- 实际项目通常是由多个头文件和多个源文件构成,而通过C语言阶段学习的编译链接,我们可以知道,【当前a.cpp中调用了b.cpp中定义的Add函数时】,编译后链接前,a.o的目标文件中没有Add的函数地址,因为Add是在b.cpp中定义的,所以Add的地址在b.o中。那么怎么办呢?
-
- 所以链接阶段就是专门处理这种问题,链接器看到a.o调用Add,但是没有Add的地址,就会到b.o的符号表中找Add的地址,然后链接到一起。
-
- 那么链接时,面对Add函数,链接接器会使用哪个名字去找呢?这里每个编译器都有自己的函数名修饰规则。
-
- 由于Windows下vs的修饰规则过于复杂,而Linux下g++的修饰规则简单易懂,下面我们使用了g++演示了这个修饰后的名字。
-
- 通过下面我们可以看出gcc的函数修饰后名字不变。而g++的函数修饰后变成【_Z+函数长度+函数名+类型首字母】。
-
采用C语言编译器编译后结果
结论:在linux下,采用gcc编译完成后,函数名字的修饰没有发生改变。 -
采用C++编译器编译后结果
结论:在linux下,采用g++编译完成后,函数名字的修饰发生改变,编译器将函数参数类型信息添加到修改后的名字中。 -
Windows下名字修饰规则:
-
对比Linux会发现,windows下vs编译器对函数名字修饰规则相对复杂难懂,但道理都是类似的,我们就不做细致的研究了。
【扩展学习:C/C++函数调用约定和名字修饰规则–有兴趣好奇的同学可以看看,里面有对vs下函数名修饰规则讲解】
C/C++的调用约定
-
- 通过这里就理解了C语言没办法支持重载,因为同名函数没办法区分。而C++是通过函数修饰规则来区分,只要参数不同,修饰出来的名字就不一样,就支持了重载。
-
- 如果两个函数函数名和参数是一样的,返回值不同是不构成重载的,因为调用时编译器没办法区分。
6. 引用
6.1 引用概念
-
引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空
间,它和它引用的变量共用同一块内存空间。 -
比如:李逵,在家称为"铁牛",江湖上人称"黑旋风"。
类型& 引用变量名(对象名) = 引用实体;
void TestRef()
{int a = 10;int &ra = a; //<====定义引用类型printf("%p\n", &a);printf("%p\n", &ra);
}
注意: 引用类型必须和引用实体是同种类型的
6.2 引用特性
-
- 引用在定义时必须初始化
-
- 一个变量可以有多个引用
-
- 引用一旦引用一个实体,再不能引用其他实体
void TestRef()
{int a = 10;// int& ra; // 该条语句编译时会出错int &ra = a;int &rra = a;printf("%p %p %p\n", &a, &ra, &rra);
}
6.3 常引用
void TestConstRef()
{const int a = 10;//int& ra = a; // 该语句编译时会出错,a为常量const int &ra = a;// int& b = 10; // 该语句编译时会出错,b为常量const int &b = 10;double d = 12.34;//int& rd = d; // 该语句编译时会出错,类型不同const int &rd = d;
}
6.4 使用场景
-
- 做参数
void Swap(int &left, int &right)
{int temp = left;left = right;right = temp;
}
-
- 做返回值
int &Count()
{static int n = 0;n++;// ...return n;
}
下面代码输出什么结果?为什么?
int &Add(int a, int b)
{int c = a + b;return c;
}
int main()
{int &ret = Add(1, 2);Add(3, 4);cout << "Add(1, 2) is :" << ret << endl;return 0;
}
注意: 如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回。
6.5 传值、传引用效率比较
6.5.1 效率比较
- 以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。
#include <time.h>
struct A
{int a[10000];
};
void TestFunc1(A a) {}
void TestFunc2(A &a) {}
void TestRefAndValue()
{A a;// 以值作为函数参数size_t begin1 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc1(a);size_t end1 = clock();// 以引用作为函数参数size_t begin2 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc2(a);size_t end2 = clock();// 分别计算两个函数运行结束后的时间cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}
6.5.2 值和引用的作为返回值类型的性能比较
#include <time.h>struct A
{int a[10000];
};
A a;
// 值返回
A TestFunc1() { return a; }
// 引用返回
A &TestFunc2() { return a; }
void TestReturnByRefOrValue()
{// 以值作为函数的返回值类型size_t begin1 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc1();size_t end1 = clock();// 以引用作为函数的返回值类型size_t begin2 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc2();size_t end2 = clock();// 计算两个函数运算完成之后的时间cout << "TestFunc1 time:" << end1 - begin1 << endl;cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
- 通过上述代码的比较,发现传值和指针在作为传参以及返回值类型上效率相差很大。
6.6 引用和指针的区别
在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。
int main()
{int a = 10;int &ra = a;cout << "&a = " << &a << endl;cout << "&ra = " << &ra << endl;return 0;
}
- 在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。
int main()
{int a = 10;int &ra = a;ra = 20;int *pa = &a;*pa = 20;return 0;
}
-
我们来看下引用和指针的汇编代码对比:
引用和指针的不同点: -
- 引用概念上定义一个变量的别名,指针存储一个变量地址。
-
- 引用在定义时必须初始化,指针没有要求
-
- 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体
-
- 没有NULL引用,但有NULL指针
-
- 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)
-
- 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
-
- 有多级指针,但是没有多级引用
-
- 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
-
- 引用比指针使用起来相对更安全
7. 内联函数
7.1 概念
以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。
- 如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的调用。
查看方式: -
- 在release模式下,查看编译器生成的汇编代码中是否存在call Add
-
- 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化,以下给出vs2013的设置方式)
- 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化,以下给出vs2013的设置方式)
7.2 特性
-
- inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
-
- inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为《C++prime》第五版关于inline的建议:
- inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为《C++prime》第五版关于inline的建议:
-
- inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。
// F.h
#include <iostream>
using namespace std;
inline void f(int i);// F.cpp
#include "F.h"
void f(int i)
{cout << i << endl;
}// main.cpp
#include "F.h"
int main()
{f(10);return 0;
}
// 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdeclf(int) " (?f@@YAXH@Z),该符号在函数 _main 中被引用
【面试题】宏的优缺点?
优点:
- 1.增强代码的复用性。
- 2.提高性能。
缺点:
- 1.不方便调试宏。(因为预编译阶段进行了替换)
- 2.导致代码可读性差,可维护性差,容易误用。
- 3.没有类型安全的检查 。
C++有哪些技术替代宏?
-
- 常量定义 换用const enum
-
- 短小函数定义 换用内联函数
8. auto关键字(C++11)
8.1 类型别名思考
随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:
-
- 类型难于拼写
-
- 含义不明确导致容易出错
#include <string>
#include <map>
int main()
{std::map<std::string, std::string> m{{"apple", "苹果"}, {"orange", "橙子"}, {"pear", "梨"}};std::map<std::string, std::string>::iterator it = m.begin();while (it != m.end()){//....}return 0;
}
- std::map<std::string, std::string>::iterator 是一个类型,但是该类型太长了,特别容易写错。聪明的同学可能已经想到:可以通过typedef给类型取别名
比如:
#include <string>
#include <map>typedef std::map<std::string, std::string> Map;int main()
{Map m{{"apple", "苹果"}, {"orange", "橙子"}, {"pear", "梨"}};Map::iterator it = m.begin();while (it != m.end()){//....}return 0;
}
- 使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:
typedef char *pstring;int main()
{const pstring p1;// 编译成功还是失败?const pstring *p2;// 编译成功还是失败?return 0;
}
- 在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。
8.2 auto简介
- 在早期C/C++ 中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的
是一直没有人去使用它,大家可思考下为什么? - C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。
int TestAuto()
{return 10;
}int main()
{int a = 10;auto b = a;auto c = 'a';auto d = TestAuto();cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;cout << typeid(d).name() << endl;// auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化return 0;
}
【注意】
- 使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。
8.3 auto的使用细则
-
- auto与指针和引用结合起来使用用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&。
int main()
{int x = 10;auto a = &x;auto *b = &x;auto &c = x;cout << typeid(a).name() << endl;cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;*a = 20;*b = 30;c = 40;return 0;
}
-
- 在同一行定义多个变量当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。
void TestAuto()
{auto a = 1, b = 2;auto c = 3, d = 4.0;// 该行代码会编译失败,因为c和d的初始化表达式类型不同
}
8.4 auto不能推导的场景
-
- auto不能作为函数的参数
// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{
}
-
- auto不能直接用来声明数组
void TestAuto()
{int a[] = {1,2,3};auto b[] = {4,5,6};
}
-
- 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
-
- auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有lambda表达式等进行配合使用。
9. 基于范围的for循环(C++11)
9.1 范围for语法
- 在C++98中如果要遍历一个数组,可以按照以下方式进行:
void TestFor()
{int array[] = {1, 2, 3, 4, 5};for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)array[i] *= 2;for (int *p = array; p < array + sizeof(array) / sizeof(array[0]); ++p)cout << *p << endl;
}
- 对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围。
void TestFor()
{int array[] = {1, 2, 3, 4, 5};for (auto &e : array)e *= 2;for (auto e : array)cout << e << " ";return 0;
}
注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。
9.2 范围for的使用条件
-
- for循环迭代的范围必须是确定的
对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供begin和end的方法,begin和end就是for循环迭代的范围。
- for循环迭代的范围必须是确定的
注意:以下代码就有问题,因为for的范围不确定
void TestFor(int array[])
{for (auto &e : array)cout << e << endl;
}
-
- 迭代的对象要实现++和==的操作。(关于迭代器这个问题,以后会讲,现在提一下,没办法讲清楚,现在大家了解一下就可以了)
10. 指针空值nullptr(C++11)
10.1 C++98中的指针空值
- 在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:
void TestPtr()
{int *p1 = NULL;int *p2 = 0;// ……
}
- NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif
- 可以看到, NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量 。不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:
void f(int)
{cout << "f(int)" << endl;
}
void f(int *)
{cout << "f(int*)" << endl;
}
int main()
{f(0);f(NULL);f((int *)NULL);return 0;
}
-
程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。
-
在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。
注意:
-
- 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。
-
- 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。
-
- 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullpt
今天的内容就分享这么多
求三连!!!
求关注!!!