【YOLOv8改进[Neck]】使用BiFPN助力V8更优秀

目录

一 BiFPN(双向特征金字塔网络)

1 BiFPN

2 EfficientDet

二 使用BiFPN助力模型更优秀

1 整体修改

2 配置文件

3 训练

其他


一 BiFPN(双向特征金字塔网络)

BiFPN(双向特征金字塔网络, 2020)用于特征融合层

官方论文地址:https://arxiv.org/pdf/1911.09070.pdf

在计算机视觉中,模型效率变得越来越重要。本文系统地研究了目标检测的神经网络架构选择,并提出了几个关键的优化方法来提高效率。首先,提出了一种加权双向特征金字塔网络(BiFPN),它可以实现简单快速的多尺度特征融合;其次,提出了一种复合缩放方法,该方法可以同时对所有骨干网络、特征网络和框/类预测网络的分辨率、深度和宽度进行统一缩放。基于这些优化和更好的主干,开发了一个新的对象检测器系列,称为EfficientDet,它在广泛的资源限制范围内始终实现比现有技术更高的效率。

代码地址https://github.com/google/automl/tree/master/efficientdet

1 BiFPN

下图中的特征网络设计:

a FPN引入了自顶向下的路径来融合从3级到7级的多尺度特征 (p3 - p7);

b PANet在FPN之上增加了一条额外的自下而上的通路;

c NAS-FPN采用神经网络架构搜索(NAS)找到不规则的特征网络拓扑,然后重复应用同一块;

d 通过双向跨尺度连接和重复同一块的设计,提高了准确性和效率的权衡。

2 EfficientDet

下图是EfficientDet 的架构:

采用EfficientDet作为骨干网,采用BiFPN作为特征网,采用共享类/框预测网络。

提出的BiFPN作为特征网络从骨干网中提取3-7级特征{P3, P4, P5, P6, P7},进行自顶向下和自底向上的双向特征融合。这些融合的特征被送到类和框网络中,分别产生对象的类别和边界框预测。类和网络的权重在所有级别的特征上是共享的

二 使用BiFPN助力模型更优秀

1 整体修改

① 添加BiFPN.py文件

ultralytics/nn/modules目录下新建BiFPN.py文件,文件的内容如下:

import torch.nn as nn
import torch__all__ = ['Bi_FPN']class swish(nn.Module):def forward(self, x):return x * torch.sigmoid(x)class Bi_FPN(nn.Module):def __init__(self, length):super().__init__()self.weight = nn.Parameter(torch.ones(length, dtype=torch.float32), requires_grad=True)self.swish = swish()self.epsilon = 0.0001def forward(self, x):weights = self.weight / (torch.sum(self.swish(self.weight), dim=0) + self.epsilon) # 权重归一化处理weighted_feature_maps = [weights[i] * x[i] for i in range(len(x))]stacked_feature_maps = torch.stack(weighted_feature_maps, dim=0)result = torch.sum(stacked_feature_maps, dim=0)return result

② 修改ultralytics/nn/tasks.py文件

具体的修改内容如下图所示:

2 配置文件

说明:以下配置文件的内容来源于网络,非个人设计。

yolov8_BiFPN.yaml 的内容如下所示:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [4, 1, Conv, [256]]  # 10-P3/8- [6, 1, Conv, [256]]  # 11-P4/16- [9, 1, Conv, [256]]  # 12-P5/32- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 11], 1, Bi_FPN, []] # 14- [-1, 3, C2f, [256]] # 15-P4/16- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 10], 1, Bi_FPN, []] # 17- [-1, 3, C2f, [256]] # 18-P3/8- [1, 1, Conv, [256, 3, 2]] - [[-1, 10, 18], 1, Bi_FPN, []] # 20- [-1, 3, C2f, [256]] # 21-P3/8- [-1, 1, Conv, [256, 3, 2]] # 22 P3->P4- [[-1, 11, 15], 1, Bi_FPN, []] # 23- [-1, 3, C2f, [512]] # 24-P4/16- [-1, 1, Conv, [256, 3, 2]] # 25 P4->P5- [[-1, 12], 1, Bi_FPN, []] # 26- [-1, 3, C2f, [1024]] # 27-P5/32- [[21, 24, 27], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3 训练

上述修改完毕后,开始训练吧!🌺🌺🌺

训练示例

yolo task=detect mode=train model=cfg/models/v8/yolov8_BiFPN.yaml data=cfg/datasets/coco128.yaml epochs=100 batch=16 device=cpu project=yolov8

其他

如果觉得替换部分内容不方便的话,可以直接复制下述文件对应替换原始py文件的内容:

  • 修改后的task.py
# Ultralytics YOLO 🚀, AGPL-3.0 licenseimport contextlib
from copy import deepcopy
from pathlib import Pathimport torch
import torch.nn as nnfrom ultralytics.nn.modules import (AIFI,C1,C2,C3,C3TR,OBB,SPP,SPPELAN,SPPF,ADown,Bottleneck,BottleneckCSP,C2f,C2fAttn,C3Ghost,C3x,CBFuse,CBLinear,Classify,Concat,Conv,Conv2,ConvTranspose,Detect,DWConv,DWConvTranspose2d,Focus,GhostBottleneck,GhostConv,HGBlock,HGStem,ImagePoolingAttn,Pose,RepC3,RepConv,RepNCSPELAN4,ResNetLayer,RTDETRDecoder,Segment,Silence,WorldDetect,
)
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
from ultralytics.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8OBBLoss, v8PoseLoss, v8SegmentationLoss
from ultralytics.utils.plotting import feature_visualization
from ultralytics.utils.torch_utils import (fuse_conv_and_bn,fuse_deconv_and_bn,initialize_weights,intersect_dicts,make_divisible,model_info,scale_img,time_sync,
)
from .modules.DynamicHead import Detect_DynamicHead #导入DynamicHead.py中的检测头
from .modules.OREPA import OREPA #导入OREPA
from .modules.BiFPN import Bi_FPN #导入Bi_FPN
try:import thop
except ImportError:thop = Noneclass BaseModel(nn.Module):"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""def forward(self, x, *args, **kwargs):"""Forward pass of the model on a single scale. Wrapper for `_forward_once` method.Args:x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.Returns:(torch.Tensor): The output of the network."""if isinstance(x, dict):  # for cases of training and validating while training.return self.loss(x, *args, **kwargs)return self.predict(x, *args, **kwargs)def predict(self, x, profile=False, visualize=False, augment=False, embed=None):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool):  Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.augment (bool): Augment image during prediction, defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): The last output of the model."""if augment:return self._predict_augment(x)return self._predict_once(x, profile, visualize, embed)def _predict_once(self, x, profile=False, visualize=False, embed=None):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool):  Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): The last output of the model."""y, dt, embeddings = [], [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)return xdef _predict_augment(self, x):"""Perform augmentations on input image x and return augmented inference."""LOGGER.warning(f"WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. "f"Reverting to single-scale inference instead.")return self._predict_once(x)def _profile_one_layer(self, m, x, dt):"""Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results tothe provided list.Args:m (nn.Module): The layer to be profiled.x (torch.Tensor): The input data to the layer.dt (list): A list to store the computation time of the layer.Returns:None"""c = m == self.model[-1] and isinstance(x, list)  # is final layer list, copy input as inplace fixflops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1e9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")LOGGER.info(f"{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f}  {m.type}")if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")def fuse(self, verbose=True):"""Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve thecomputation efficiency.Returns:(nn.Module): The fused model is returned."""if not self.is_fused():for m in self.model.modules():if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, "bn"):if isinstance(m, Conv2):m.fuse_convs()m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, "bn")  # remove batchnormm.forward = m.forward_fuse  # update forwardif isinstance(m, ConvTranspose) and hasattr(m, "bn"):m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)delattr(m, "bn")  # remove batchnormm.forward = m.forward_fuse  # update forwardif isinstance(m, RepConv):m.fuse_convs()m.forward = m.forward_fuse  # update forwardself.info(verbose=verbose)return selfdef is_fused(self, thresh=10):"""Check if the model has less than a certain threshold of BatchNorm layers.Args:thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.Returns:(bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise."""bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k)  # normalization layers, i.e. BatchNorm2d()return sum(isinstance(v, bn) for v in self.modules()) < thresh  # True if < 'thresh' BatchNorm layers in modeldef info(self, detailed=False, verbose=True, imgsz=640):"""Prints model information.Args:detailed (bool): if True, prints out detailed information about the model. Defaults to Falseverbose (bool): if True, prints out the model information. Defaults to Falseimgsz (int): the size of the image that the model will be trained on. Defaults to 640"""return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)def _apply(self, fn):"""Applies a function to all the tensors in the model that are not parameters or registered buffers.Args:fn (function): the function to apply to the modelReturns:(BaseModel): An updated BaseModel object."""self = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, (Detect, Detect_DynamicHead)):  # includes all Detect subclasses like Segment, Pose, OBB, WorldDetectm.stride = fn(m.stride)m.anchors = fn(m.anchors)m.strides = fn(m.strides)return selfdef load(self, weights, verbose=True):"""Load the weights into the model.Args:weights (dict | torch.nn.Module): The pre-trained weights to be loaded.verbose (bool, optional): Whether to log the transfer progress. Defaults to True."""model = weights["model"] if isinstance(weights, dict) else weights  # torchvision models are not dictscsd = model.float().state_dict()  # checkpoint state_dict as FP32csd = intersect_dicts(csd, self.state_dict())  # intersectself.load_state_dict(csd, strict=False)  # loadif verbose:LOGGER.info(f"Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights")def loss(self, batch, preds=None):"""Compute loss.Args:batch (dict): Batch to compute loss onpreds (torch.Tensor | List[torch.Tensor]): Predictions."""if not hasattr(self, "criterion"):self.criterion = self.init_criterion()preds = self.forward(batch["img"]) if preds is None else predsreturn self.criterion(preds, batch)def init_criterion(self):"""Initialize the loss criterion for the BaseModel."""raise NotImplementedError("compute_loss() needs to be implemented by task heads")class DetectionModel(BaseModel):"""YOLOv8 detection model."""def __init__(self, cfg="yolov8n.yaml", ch=3, nc=None, verbose=True):  # model, input channels, number of classes"""Initialize the YOLOv8 detection model with the given config and parameters."""super().__init__()self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict# Define modelch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channelsif nc and nc != self.yaml["nc"]:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml["nc"] = nc  # override YAML valueself.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelistself.names = {i: f"{i}" for i in range(self.yaml["nc"])}  # default names dictself.inplace = self.yaml.get("inplace", True)# Build stridesm = self.model[-1]  # Detect()if isinstance(m, (Detect, Detect_DynamicHead)):  # includes all Detect subclasses like Segment, Pose, OBB, WorldDetects = 256  # 2x min stridem.inplace = self.inplaceforward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x)m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forwardself.stride = m.stridem.bias_init()  # only run onceelse:self.stride = torch.Tensor([32])  # default stride for i.e. RTDETR# Init weights, biasesinitialize_weights(self)if verbose:self.info()LOGGER.info("")def _predict_augment(self, x):"""Perform augmentations on input image x and return augmented inference and train outputs."""img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = super().predict(xi)[0]  # forwardyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, -1), None  # augmented inference, train@staticmethoddef _descale_pred(p, flips, scale, img_size, dim=1):"""De-scale predictions following augmented inference (inverse operation)."""p[:, :4] /= scale  # de-scalex, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)if flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrreturn torch.cat((x, y, wh, cls), dim)def _clip_augmented(self, y):"""Clip YOLO augmented inference tails."""nl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4**x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[-1] // g) * sum(4**x for x in range(e))  # indicesy[0] = y[0][..., :-i]  # largei = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][..., i:]  # smallreturn ydef init_criterion(self):"""Initialize the loss criterion for the DetectionModel."""return v8DetectionLoss(self)class OBBModel(DetectionModel):"""YOLOv8 Oriented Bounding Box (OBB) model."""def __init__(self, cfg="yolov8n-obb.yaml", ch=3, nc=None, verbose=True):"""Initialize YOLOv8 OBB model with given config and parameters."""super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def init_criterion(self):"""Initialize the loss criterion for the model."""return v8OBBLoss(self)class SegmentationModel(DetectionModel):"""YOLOv8 segmentation model."""def __init__(self, cfg="yolov8n-seg.yaml", ch=3, nc=None, verbose=True):"""Initialize YOLOv8 segmentation model with given config and parameters."""super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def init_criterion(self):"""Initialize the loss criterion for the SegmentationModel."""return v8SegmentationLoss(self)class PoseModel(DetectionModel):"""YOLOv8 pose model."""def __init__(self, cfg="yolov8n-pose.yaml", ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):"""Initialize YOLOv8 Pose model."""if not isinstance(cfg, dict):cfg = yaml_model_load(cfg)  # load model YAMLif any(data_kpt_shape) and list(data_kpt_shape) != list(cfg["kpt_shape"]):LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")cfg["kpt_shape"] = data_kpt_shapesuper().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def init_criterion(self):"""Initialize the loss criterion for the PoseModel."""return v8PoseLoss(self)class ClassificationModel(BaseModel):"""YOLOv8 classification model."""def __init__(self, cfg="yolov8n-cls.yaml", ch=3, nc=None, verbose=True):"""Init ClassificationModel with YAML, channels, number of classes, verbose flag."""super().__init__()self._from_yaml(cfg, ch, nc, verbose)def _from_yaml(self, cfg, ch, nc, verbose):"""Set YOLOv8 model configurations and define the model architecture."""self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict# Define modelch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channelsif nc and nc != self.yaml["nc"]:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml["nc"] = nc  # override YAML valueelif not nc and not self.yaml.get("nc", None):raise ValueError("nc not specified. Must specify nc in model.yaml or function arguments.")self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelistself.stride = torch.Tensor([1])  # no stride constraintsself.names = {i: f"{i}" for i in range(self.yaml["nc"])}  # default names dictself.info()@staticmethoddef reshape_outputs(model, nc):"""Update a TorchVision classification model to class count 'n' if required."""name, m = list((model.model if hasattr(model, "model") else model).named_children())[-1]  # last moduleif isinstance(m, Classify):  # YOLO Classify() headif m.linear.out_features != nc:m.linear = nn.Linear(m.linear.in_features, nc)elif isinstance(m, nn.Linear):  # ResNet, EfficientNetif m.out_features != nc:setattr(model, name, nn.Linear(m.in_features, nc))elif isinstance(m, nn.Sequential):types = [type(x) for x in m]if nn.Linear in types:i = types.index(nn.Linear)  # nn.Linear indexif m[i].out_features != nc:m[i] = nn.Linear(m[i].in_features, nc)elif nn.Conv2d in types:i = types.index(nn.Conv2d)  # nn.Conv2d indexif m[i].out_channels != nc:m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)def init_criterion(self):"""Initialize the loss criterion for the ClassificationModel."""return v8ClassificationLoss()class RTDETRDetectionModel(DetectionModel):"""RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating boththe training and inference processes. RTDETR is an object detection and tracking model that extends from theDetectionModel base class.Attributes:cfg (str): The configuration file path or preset string. Default is 'rtdetr-l.yaml'.ch (int): Number of input channels. Default is 3 (RGB).nc (int, optional): Number of classes for object detection. Default is None.verbose (bool): Specifies if summary statistics are shown during initialization. Default is True.Methods:init_criterion: Initializes the criterion used for loss calculation.loss: Computes and returns the loss during training.predict: Performs a forward pass through the network and returns the output."""def __init__(self, cfg="rtdetr-l.yaml", ch=3, nc=None, verbose=True):"""Initialize the RTDETRDetectionModel.Args:cfg (str): Configuration file name or path.ch (int): Number of input channels.nc (int, optional): Number of classes. Defaults to None.verbose (bool, optional): Print additional information during initialization. Defaults to True."""super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def init_criterion(self):"""Initialize the loss criterion for the RTDETRDetectionModel."""from ultralytics.models.utils.loss import RTDETRDetectionLossreturn RTDETRDetectionLoss(nc=self.nc, use_vfl=True)def loss(self, batch, preds=None):"""Compute the loss for the given batch of data.Args:batch (dict): Dictionary containing image and label data.preds (torch.Tensor, optional): Precomputed model predictions. Defaults to None.Returns:(tuple): A tuple containing the total loss and main three losses in a tensor."""if not hasattr(self, "criterion"):self.criterion = self.init_criterion()img = batch["img"]# NOTE: preprocess gt_bbox and gt_labels to list.bs = len(img)batch_idx = batch["batch_idx"]gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]targets = {"cls": batch["cls"].to(img.device, dtype=torch.long).view(-1),"bboxes": batch["bboxes"].to(device=img.device),"batch_idx": batch_idx.to(img.device, dtype=torch.long).view(-1),"gt_groups": gt_groups,}preds = self.predict(img, batch=targets) if preds is None else predsdec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]if dn_meta is None:dn_bboxes, dn_scores = None, Noneelse:dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta["dn_num_split"], dim=2)dn_scores, dec_scores = torch.split(dec_scores, dn_meta["dn_num_split"], dim=2)dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes])  # (7, bs, 300, 4)dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])loss = self.criterion((dec_bboxes, dec_scores), targets, dn_bboxes=dn_bboxes, dn_scores=dn_scores, dn_meta=dn_meta)# NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ["loss_giou", "loss_class", "loss_bbox"]], device=img.device)def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):"""Perform a forward pass through the model.Args:x (torch.Tensor): The input tensor.profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.batch (dict, optional): Ground truth data for evaluation. Defaults to None.augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): Model's output tensor."""y, dt, embeddings = [], [], []  # outputsfor m in self.model[:-1]:  # except the head partif m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)head = self.model[-1]x = head([y[j] for j in head.f], batch)  # head inferencereturn xclass WorldModel(DetectionModel):"""YOLOv8 World Model."""def __init__(self, cfg="yolov8s-world.yaml", ch=3, nc=None, verbose=True):"""Initialize YOLOv8 world model with given config and parameters."""self.txt_feats = torch.randn(1, nc or 80, 512)  # features placeholderself.clip_model = None  # CLIP model placeholdersuper().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def set_classes(self, text, batch=80, cache_clip_model=True):"""Set classes in advance so that model could do offline-inference without clip model."""try:import clipexcept ImportError:check_requirements("git+https://github.com/ultralytics/CLIP.git")import clipif (not getattr(self, "clip_model", None) and cache_clip_model):  # for backwards compatibility of models lacking clip_model attributeself.clip_model = clip.load("ViT-B/32")[0]model = self.clip_model if cache_clip_model else clip.load("ViT-B/32")[0]device = next(model.parameters()).devicetext_token = clip.tokenize(text).to(device)txt_feats = [model.encode_text(token).detach() for token in text_token.split(batch)]txt_feats = txt_feats[0] if len(txt_feats) == 1 else torch.cat(txt_feats, dim=0)txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1])self.model[-1].nc = len(text)def predict(self, x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None):"""Perform a forward pass through the model.Args:x (torch.Tensor): The input tensor.profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.txt_feats (torch.Tensor): The text features, use it if it's given. Defaults to None.augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): Model's output tensor."""txt_feats = (self.txt_feats if txt_feats is None else txt_feats).to(device=x.device, dtype=x.dtype)if len(txt_feats) != len(x):txt_feats = txt_feats.repeat(len(x), 1, 1)ori_txt_feats = txt_feats.clone()y, dt, embeddings = [], [], []  # outputsfor m in self.model:  # except the head partif m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if isinstance(m, C2fAttn):x = m(x, txt_feats)elif isinstance(m, WorldDetect):x = m(x, ori_txt_feats)elif isinstance(m, ImagePoolingAttn):txt_feats = m(x, txt_feats)else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)return xdef loss(self, batch, preds=None):"""Compute loss.Args:batch (dict): Batch to compute loss on.preds (torch.Tensor | List[torch.Tensor]): Predictions."""if not hasattr(self, "criterion"):self.criterion = self.init_criterion()if preds is None:preds = self.forward(batch["img"], txt_feats=batch["txt_feats"])return self.criterion(preds, batch)class Ensemble(nn.ModuleList):"""Ensemble of models."""def __init__(self):"""Initialize an ensemble of models."""super().__init__()def forward(self, x, augment=False, profile=False, visualize=False):"""Function generates the YOLO network's final layer."""y = [module(x, augment, profile, visualize)[0] for module in self]# y = torch.stack(y).max(0)[0]  # max ensemble# y = torch.stack(y).mean(0)  # mean ensembley = torch.cat(y, 2)  # nms ensemble, y shape(B, HW, C)return y, None  # inference, train output# Functions ------------------------------------------------------------------------------------------------------------@contextlib.contextmanager
def temporary_modules(modules=None):"""Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`).This function can be used to change the module paths during runtime. It's useful when refactoring code,where you've moved a module from one location to another, but you still want to support the old importpaths for backwards compatibility.Args:modules (dict, optional): A dictionary mapping old module paths to new module paths.Example:```pythonwith temporary_modules({'old.module.path': 'new.module.path'}):import old.module.path  # this will now import new.module.path```Note:The changes are only in effect inside the context manager and are undone once the context manager exits.Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in largerapplications or libraries. Use this function with caution."""if not modules:modules = {}import importlibimport systry:# Set modules in sys.modules under their old namefor old, new in modules.items():sys.modules[old] = importlib.import_module(new)yieldfinally:# Remove the temporary module pathsfor old in modules:if old in sys.modules:del sys.modules[old]def torch_safe_load(weight):"""This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,it catches the error, logs a warning message, and attempts to install the missing module via thecheck_requirements() function. After installation, the function again attempts to load the model using torch.load().Args:weight (str): The file path of the PyTorch model.Returns:(dict): The loaded PyTorch model."""from ultralytics.utils.downloads import attempt_download_assetcheck_suffix(file=weight, suffix=".pt")file = attempt_download_asset(weight)  # search online if missing locallytry:with temporary_modules({"ultralytics.yolo.utils": "ultralytics.utils","ultralytics.yolo.v8": "ultralytics.models.yolo","ultralytics.yolo.data": "ultralytics.data",}):  # for legacy 8.0 Classify and Pose modelsckpt = torch.load(file, map_location="cpu")except ModuleNotFoundError as e:  # e.name is missing module nameif e.name == "models":raise TypeError(emojis(f"ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained "f"with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with "f"YOLOv8 at https://github.com/ultralytics/ultralytics."f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from eLOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")check_requirements(e.name)  # install missing moduleckpt = torch.load(file, map_location="cpu")if not isinstance(ckpt, dict):# File is likely a YOLO instance saved with i.e. torch.save(model, "saved_model.pt")LOGGER.warning(f"WARNING ⚠️ The file '{weight}' appears to be improperly saved or formatted. "f"For optimal results, use model.save('filename.pt') to correctly save YOLO models.")ckpt = {"model": ckpt.model}return ckpt, file  # loaddef attempt_load_weights(weights, device=None, inplace=True, fuse=False):"""Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""ensemble = Ensemble()for w in weights if isinstance(weights, list) else [weights]:ckpt, w = torch_safe_load(w)  # load ckptargs = {**DEFAULT_CFG_DICT, **ckpt["train_args"]} if "train_args" in ckpt else None  # combined argsmodel = (ckpt.get("ema") or ckpt["model"]).to(device).float()  # FP32 model# Model compatibility updatesmodel.args = args  # attach args to modelmodel.pt_path = w  # attach *.pt file path to modelmodel.task = guess_model_task(model)if not hasattr(model, "stride"):model.stride = torch.tensor([32.0])# Appendensemble.append(model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval())  # model in eval mode# Module updatesfor m in ensemble.modules():if hasattr(m, "inplace"):m.inplace = inplaceelif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"):m.recompute_scale_factor = None  # torch 1.11.0 compatibility# Return modelif len(ensemble) == 1:return ensemble[-1]# Return ensembleLOGGER.info(f"Ensemble created with {weights}\n")for k in "names", "nc", "yaml":setattr(ensemble, k, getattr(ensemble[0], k))ensemble.stride = ensemble[int(torch.argmax(torch.tensor([m.stride.max() for m in ensemble])))].strideassert all(ensemble[0].nc == m.nc for m in ensemble), f"Models differ in class counts {[m.nc for m in ensemble]}"return ensembledef attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):"""Loads a single model weights."""ckpt, weight = torch_safe_load(weight)  # load ckptargs = {**DEFAULT_CFG_DICT, **(ckpt.get("train_args", {}))}  # combine model and default args, preferring model argsmodel = (ckpt.get("ema") or ckpt["model"]).to(device).float()  # FP32 model# Model compatibility updatesmodel.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to modelmodel.pt_path = weight  # attach *.pt file path to modelmodel.task = guess_model_task(model)if not hasattr(model, "stride"):model.stride = torch.tensor([32.0])model = model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval()  # model in eval mode# Module updatesfor m in model.modules():if hasattr(m, "inplace"):m.inplace = inplaceelif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"):m.recompute_scale_factor = None  # torch 1.11.0 compatibility# Return model and ckptreturn model, ckptdef parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)"""Parse a YOLO model.yaml dictionary into a PyTorch model."""import ast# Argsmax_channels = float("inf")nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))if scales:scale = d.get("scale")if not scale:scale = tuple(scales.keys())[0]LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")depth, width, max_channels = scales[scale]if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()if verbose:LOGGER.info(f"{colorstr('activation:')} {act}")  # printif verbose:LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")ch = [ch]layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, argsm = getattr(torch.nn, m[3:]) if "nn." in m else globals()[m]  # get modulefor j, a in enumerate(args):if isinstance(a, str):with contextlib.suppress(ValueError):args[j] = locals()[a] if a in locals() else ast.literal_eval(a)n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gainif m in {Classify,Conv,ConvTranspose,GhostConv,Bottleneck,GhostBottleneck,SPP,SPPF,DWConv,Focus,BottleneckCSP,C1,C2,C2f,RepNCSPELAN4,ADown,SPPELAN,C2fAttn,C3,C3TR,C3Ghost,nn.ConvTranspose2d,DWConvTranspose2d,C3x,RepC3,}:c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)if m is C2fAttn:args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channelsargs[2] = int(max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2])  # num headsargs = [c1, c2, *args[1:]]if m in {BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3}:args.insert(2, n)  # number of repeatsn = 1elif m is AIFI:args = [ch[f], *args]elif m in {OREPA}:args = [ch[f], *args]elif m in {HGStem, HGBlock}:c1, cm, c2 = ch[f], args[0], args[1]args = [c1, cm, c2, *args[2:]]if m is HGBlock:args.insert(4, n)  # number of repeatsn = 1elif m in {Bi_FPN}: #注册Bi_FPN模块args = [len([ch[x] for x in f])]elif m is ResNetLayer:c2 = args[1] if args[3] else args[1] * 4elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m in {Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn, Detect_DynamicHead}:args.append([ch[x] for x in f])if m is Segment:args[2] = make_divisible(min(args[2], max_channels) * width, 8)elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1args.insert(1, [ch[x] for x in f])elif m is CBLinear:c2 = args[0]c1 = ch[f]args = [c1, c2, *args[1:]]elif m is CBFuse:c2 = ch[f[-1]]else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace("__main__.", "")  # module typem.np = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type = i, f, t  # attach index, 'from' index, typeif verbose:LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}")  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)def yaml_model_load(path):"""Load a YOLOv8 model from a YAML file."""import repath = Path(path)if path.stem in (f"yolov{d}{x}6" for x in "nsmlx" for d in (5, 8)):new_stem = re.sub(r"(\d+)([nslmx])6(.+)?$", r"\1\2-p6\3", path.stem)LOGGER.warning(f"WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.")path = path.with_name(new_stem + path.suffix)unified_path = re.sub(r"(\d+)([nslmx])(.+)?$", r"\1\3", str(path))  # i.e. yolov8x.yaml -> yolov8.yamlyaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)d = yaml_load(yaml_file)  # model dictd["scale"] = guess_model_scale(path)d["yaml_file"] = str(path)return ddef guess_model_scale(model_path):"""Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The functionuses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted byn, s, m, l, or x. The function returns the size character of the model scale as a string.Args:model_path (str | Path): The path to the YOLO model's YAML file.Returns:(str): The size character of the model's scale, which can be n, s, m, l, or x."""with contextlib.suppress(AttributeError):import rereturn re.search(r"yolov\d+([nslmx])", Path(model_path).stem).group(1)  # n, s, m, l, or xreturn ""def guess_model_task(model):"""Guess the task of a PyTorch model from its architecture or configuration.Args:model (nn.Module | dict): PyTorch model or model configuration in YAML format.Returns:(str): Task of the model ('detect', 'segment', 'classify', 'pose').Raises:SyntaxError: If the task of the model could not be determined."""def cfg2task(cfg):"""Guess from YAML dictionary."""m = cfg["head"][-1][-2].lower()  # output module nameif m in {"classify", "classifier", "cls", "fc"}:return "classify"if m == "detect":return "detect"if m == "segment":return "segment"if m == "pose":return "pose"if m == "obb":return "obb"else:return "detect"# Guess from model cfgif isinstance(model, dict):with contextlib.suppress(Exception):return cfg2task(model)# Guess from PyTorch modelif isinstance(model, nn.Module):  # PyTorch modelfor x in "model.args", "model.model.args", "model.model.model.args":with contextlib.suppress(Exception):return eval(x)["task"]for x in "model.yaml", "model.model.yaml", "model.model.model.yaml":with contextlib.suppress(Exception):return cfg2task(eval(x))for m in model.modules():if isinstance(m, Segment):return "segment"elif isinstance(m, Classify):return "classify"elif isinstance(m, Pose):return "pose"elif isinstance(m, OBB):return "obb"elif isinstance(m, (Detect, WorldDetect, Detect_DynamicHead)):return "detect"# Guess from model filenameif isinstance(model, (str, Path)):model = Path(model)if "-seg" in model.stem or "segment" in model.parts:return "segment"elif "-cls" in model.stem or "classify" in model.parts:return "classify"elif "-pose" in model.stem or "pose" in model.parts:return "pose"elif "-obb" in model.stem or "obb" in model.parts:return "obb"elif "detect" in model.parts:return "detect"# Unable to determine task from modelLOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. ""Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify','pose' or 'obb'.")return "detect"  # assume detect

到此,本文分享的内容就结束啦!遇见便是缘,感恩遇见!!!💛 💙 💜 ❤️ 💚

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/823585.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸢尾花数据集分类(决策树,朴素贝叶斯,人工神经网络)

目录 一、决策树 二、朴素贝叶斯 三、人工神经网络 四、利用三种方法进行鸢尾花数据集分类 一、决策树 决策树是一种常用的机器学习算法&#xff0c;用于分类和回归任务。它是一种树形结构&#xff0c;其中每个内部节点表示一个特征或属性&#xff0c;每个分支代表这个特征…

Spring容器结构

文章目录 1.基本介绍1.Spring5官网2.API文档3.Spring核心学习内容4.几个重要概念 2.快速入门1.需求分析2.入门案例1.新建Java项目2.导入jar包3.编写Monster.java4.src下编写Spring配置文件1.创建spring配置文件&#xff0c;名字随意&#xff0c;但是需要放在src下2.创建Spring …

SparkUI 讲解

目录 Executors Environment Storage SQL Exchange Sort Aggregate Jobs Stages Stage DAG Event Timeline Task Metrics Summary Metrics Tasks &#x1f490;&#x1f490;扫码关注公众号&#xff0c;回复 spark 关键字下载geekbang 原价 90 元 零基础入门 Spar…

IDEA2023 开发环境配置

目录 1. 关闭IDEA自动更新1.2 IDEA 新版样式切换 2. Maven配置2.1本地仓库优先加载2.2 maven.config配置文件中 3. 全局配置JDK4. 配置文件编码:UTF-85. 开启自动编译&#xff08;全局配置&#xff09;6. 开启自动导包7. 开启鼠标悬浮&#xff08;提示文档信息&#xff09;8. 设…

golang 使用栈模拟计算器

思路&#xff1a; // Author sunwenbo // 2024/4/12 16:51 package mainimport ("errors""fmt""strconv" )// 使用数组来模拟一个栈的应用 type Stack struct {MaxTop int //表示栈最大可以存放数的个数Top int //表示栈底&#xff…

2024年阿里云4核8G配置云服务器价格低性能高!

阿里云4核8G服务器租用优惠价格700元1年&#xff0c;配置为ECS通用算力型u1实例&#xff08;ecs.u1-c1m2.xlarge&#xff09;4核8G配置、1M到3M带宽可选、ESSD Entry系统盘20G到40G可选&#xff0c;CPU采用Intel(R) Xeon(R) Platinum处理器&#xff0c;阿里云优惠 aliyunfuwuqi…

代码随想录算法训练营第二十九天|491.递增子序列、46.全排列、46.全排列II

491. 非递减子序列 思路&#xff1a; 在90.子集II (opens new window)中我们是通过排序&#xff0c;再加一个标记数组来达到去重的目的。 而本题求自增子序列&#xff0c;是不能对原数组进行排序的&#xff0c;排完序的数组都是自增子序列了。 所以不能使用之前的去重逻辑&…

【模拟】Leetcode 数青蛙

题目讲解 1419. 数青蛙 算法讲解 class Solution { public:int minNumberOfFrogs(string croakOfFrogs) {string target "croak";int n target.size();//保存target每个字符的位置indexunordered_map<char, int>index;for(int i 0; i < n; i)index[tar…

必应Bing国内广告推广,帮助企业降低获客成本!

搜索引擎广告作为数字营销的重要手段之一&#xff0c;因其精准定位和效果可衡量而备受青睐。而在众多搜索引擎平台中&#xff0c;必应Bing以其独特的市场定位和用户群体成为不可忽视的广告推广渠道。云衔科技作为一家专业的数字营销服务提供商&#xff0c;致力于帮助企业实现高…

深入理解GCC/G++在CentOS上的应用

文章目录 深入理解GCC/G在CentOS上的应用编译C和C源文件C语言编译C语言编译 编译过程的详解预处理编译汇编链接 链接动态库和静态库静态库和动态库安装静态库 结论 深入理解GCC/G在CentOS上的应用 在前文的基础上&#xff0c;我们已经了解了CentOS的基本特性和如何在其上安装及…

Windows 部署ChatGLM3大语言模型

一、环境要求 硬件 内存&#xff1a;> 16GB 显存: > 13GB&#xff08;4080 16GB&#xff09; 硬盘&#xff1a;60G 软件 python 版本推荐3.10 - 3.11 transformers 库版本推荐为 4.36.2 torch 推荐使用 2.0 及以上的版本&#xff0c;以获得最佳的推理性能 二、部…

你觉得职场能力重要还是情商重要?

职场能力和情商都是职业成功的关键因素&#xff0c;它们在不同的情境和角色中扮演着不同的作用。很难简单地说哪一个更重要&#xff0c;因为它们通常是相辅相成的。 职场能力包括专业技能、知识水平、解决问题的能力、工作效率、创新思维等。这些能力是完成工作任务、达成职业目…

【NUCLEO-G071RB】003——GPIO-按键控制LED灯

NUCLEO-G071RB&#xff1a;003——GPIO-按键控制LED灯 设计目标电路原理图芯片配置程序修改 设计目标 用输入控制输出&#xff0c;即以蓝色按键B1的输入控制LED4灯的输出 细节&#xff1a; 若判定为按键按下中&#xff0c;则LED灭灯&#xff0c;否则亮灯按键按下和抬起的检查…

【Spring进阶系列丨第十篇】基于注解的面向切面编程(AOP)详解

文章目录 一、基于注解的AOP1、配置Spring环境2、在beans.xml文件中定义AOP约束3、定义记录日志的类【切面】4、定义Bean5、在主配置文件中配置扫描的包6、在主配置文件中去开启AOP的注解支持7、测试8、优化改进9、总结 一、基于注解的AOP 1、配置Spring环境 <dependencie…

多ip证书实现多个ip地址https加密

在互联网快速发展的现在&#xff0c;很多用户会使用由正规数字证书颁发机构颁发的数字证书&#xff0c;其中IP数字证书就是只有公网IP地址网站的用户用来维护网站安全的手段。由于域名网站比较方便记忆&#xff0c;只有公网IP地址的网站是很少的&#xff0c;相应的IP数字证书产…

向量数据库与图数据库:理解它们的区别

作者&#xff1a;Elastic Platform Team 大数据管理不仅仅是尽可能存储更多的数据。它关乎能够识别有意义的见解、发现隐藏的模式&#xff0c;并做出明智的决策。这种对高级分析的追求一直是数据建模和存储解决方案创新的驱动力&#xff0c;远远超出了传统关系数据库。 这些创…

单链表的应用

文章目录 目录1. 单链表经典算法OJ题目1.1 [移除链表元素](https://leetcode.cn/problems/remove-linked-list-elements/description/)1.2 [链表的中间节点](https://leetcode.cn/problems/middle-of-the-linked-list/description/)1.3 [反转链表](https://leetcode.cn/problem…

考研数学|《1800》《660》《880》如何选择和搭配?(附资料分享)

直接说结论&#xff1a;基础不好先做1800、强化之前660&#xff0c;强化可选880/1000题。 首先&#xff0c;传统习题册存在的一个问题是题量较大&#xff0c;但难度波动较大。《汤家凤1800》和《张宇1000》题量庞大&#xff0c;但有些题目难度不够平衡&#xff0c;有些过于简单…

使用 ECharts 绘制咖啡店各年订单的可视化分析

使用 ECharts 绘制咖啡店各年订单的可视化分析 在这篇博客中&#xff0c;我将分享一段使用 ECharts 库创建可视化图表的代码。通过这段代码&#xff0c;我们可以直观地分析咖啡店各年订单的情况。 饼图 这段代码包含了两个 ECharts 图表&#xff0c;一个是饼图&#xff0c;用…

Linux安装及应用管理

目录 一.Linux应用程序基础 应用程序与系统命令的关系​编辑 典型应用程序的目录结构 常见的软件包封装类型 二.rpm软件包操作管理 RPM Red-Hat Package Manager rmp命令的格式 rpm软件包操作管理 查询已安装的RPM软件信息 查询未安装的RPM软件包文件中信息 安装、升…