C++ stl容器list的底层模拟实现

目录

前言:

1.创建节点

2.普通迭代器的封装

3.反向迭代器的封装

为什么要对正向迭代器进行封装?

4.const迭代器

5.构造函数

6.拷贝构造

7.赋值重载

8.insert

9.erase

10.析构

11.头插头删,尾插尾删

12.完整代码+简单测试

总结:


前言:

模拟实现list,本篇的重点就是由于list是一个双向循环链表结构,所以我们对迭代器的实现不能是简单的指针的++,--了,因为我们知道,链表的存储不一定是连续的,所以直接++,--是链接不起来节点的,所以我们要对迭代器也就是对节点的指针进行封装。结尾会附上完整的代码。

1.创建节点

	template<class T>struct list_node{list_node<T>* _prev;list_node<T>* _next;T _data;list_node(const T& x= T())//这里不给缺省值可能会因为没有默认构造函数而编不过:_prev(nullptr),_next(nullptr),_data(x){}};

注意给缺省值,这样全缺省就会被当做默认构造了,不会因为没有默认构造而报错。

我们实现的list是带哨兵位的,它同时是迭代器的end()(因为是双向循环的list)。

 

2.普通迭代器的封装

	template<class T,class Ref,class Ptr>struct _list_iterator{typedef list_node<T> node;typedef _list_iterator<T, Ref, Ptr> self;node* _node;//对迭代器也就是节点的指针进行封装,因为list迭代器是不能直接++的_list_iterator(node* n):_node(n){}Ref operator*()//返回的必须是引用,不然改变不了外面的对象的成员,要支持对自己解引用改变值就要用应用{return _node->_data;}Ptr operator->(){return &(_node->_data);//返回地址,再解引用直接访问数据}self& operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(*this);//默认的拷贝构造可以,因为没有深拷贝_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}};

注意list是双向迭代器,可以++,--,不能+,-

这里对迭代器的实现就如我们开始所说的, 迭代器的实现就是使用节点的指针实现的,而我们不能直接对list创建出的节点进行++,--,所以要进行一层封装;然后再对节点指针初始化。

重载解引用时要注意返回的是引用,不然对自己解引用的时候,返回值如果是临时的,是改变不了内部的data的。

对于箭头的解引用,是为了支持这样的场景:

struct AA{int _a1;int _a2;AA(int a1=0,int a2=0):_a1(a1),_a2(a2){}};void test_list2(){list<AA> lt;lt.push_back(AA(1,1));lt.push_back(AA(2, 2));lt.push_back(AA(3, 3));list<AA>::iterator it = lt.begin();while (it != lt.end()){//cout << (*it)._a1 << " "<<(*it)._a2<<endl;cout << it->_a1 << " " << it->_a2 << endl;//面对这样的类型,需要重载->,.也可以访问,但是有点别扭++it;}cout << endl;}

迭代器遇到箭头,返回对象的地址也就是节点数据的地址,再解引用找到成员。或者说node中的data就是存放的是对象(也就是用来初始化的数据),然后重载的->拿到对象的地址,再->去访问里面的成员变量_a1。

对于前置后置++与--,前置就返回对象的引用,是传引用返回;后置需要进行拷贝给一个临时的对象,再对调用对象++--,返回的是tmp也就是没有改变的对象,是传值返回。注意区分前置后置,后置要加上参数int。

3.反向迭代器的封装

namespace my_iterator
{template<class Iterator,class Ref,class Ptr>struct ReverseIterator{typedef ReverseIterator<Iterator,Ref,Ptr> self;Iterator _cur;ReverseIterator(Iterator it):_cur(it){}Ref operator*(){Iterator tmp = _cur;//因为要--,而解引用是不能改值的,所以用tmp改并返回--tmp;return *tmp;}Ptr operator->(){return &operator*();//&this->operator*()}self operator++(){--_cur;//直接的++--就能直接改了,所以可以直接返回原对象,--(this->_cur)return *this;}self operator--(){++_cur;return *this;}bool operator!=(const self& s){return _cur != s._cur;}};
}

第一个模版参数就是任意类型的迭代器区间,因为我们实现反向迭代器需要现有正向迭代器。

一样的不能直接++--,所以进行一层封装,此时_cur就指向传的迭代器的位置。

对解引用的重载一样是要返回引用,不然返回的是一个临时的变量对自己解引用就没用了,也只有返回的是引用才能修改。例如我们要传的是begin(),那反向迭代器就应该从哨兵位开始,所以要先对传过来的迭代器进行--。

箭头就是返回当前位置迭代器的地址,所以是直接复用上面的。

++--与正向的迭代器相反,而_cur的类型就是传过来的迭代器类型,++--会调用传过来迭代器类型的重载。

 

为什么要对正向迭代器进行封装?

4.const迭代器

	typedef list_node<T> node;
public:typedef _list_iterator<T, T&, T*> iterator;typedef _list_iterator<T, const T&, const T*> const_iterator;typedef ReverseIterator<iterator,T&,T*> reverse_iterator;typedef ReverseIterator<iterator, const T&, const T*> const_reverse_iterator;const_iterator begin() const//本身const迭代器是让迭代器指向的内容不能修改,但是这样用const修饰迭代器本身也不能修改了{return const_iterator(_head->_next);}const_iterator end() const{return const_iterator(_head);}

 提供const版本,供const修饰的对象调用,防止权限的放大。

那为什么提供完const版本了,const版本已经可以供普通迭代器与const迭代器使用,还单独提出来这个版本?和因为const迭代器还需要迭代器也就是节点指针指向的内容不能修改。例如it是const类型迭代器的对象,*it就可以,++it也可以,但是(*it)++就不可以。

5.构造函数

		void empty_Init(){_head = new node;_head->_next = _head;_head->_prev = _head;}list(){empty_Init();}template<class Iterator>list(Iterator first, Iterator end){empty_Init();//别忘加上哨兵位,没有哨兵位识别不了endwhile (first != end){push_back(*first);first++;//这里的++first会调用重载的,因为传过来的是一个迭代器}}

哨兵位是空的,不放数据,但是哨兵位是正向迭代器的end,要加上。

默认无参构造就只有哨兵位,提供的迭代器的构造也要有哨兵位。

first++不用担心,first是迭代器类型的,所以会调用迭代器的++。 

6.拷贝构造

		//传统的拷贝构造//list(const list<T>& lt)//{//	empty_Init();//	for (auto e : lt)//	{//		push_back(e);//this->push_back(e)//	}//}void swap(list<T>& tmp)//要使用库中的swap,而库中的swap就不带const;况且交换的是头节点,const修饰的就不能修改指向{std::swap(_head, tmp._head);}//现代的拷贝构造list(const list<T>& lt){empty_Init();list<T> tmp(lt.begin(), lt.end());//为什么还要多一个变量,因为下面swap的参数没有const,而拷贝构造要加constswap(tmp);//this->swap(tmp)}

拷贝构造,直接使用库中的swap,交换头节点也就是哨兵位的指向就行,因为链表后面的关系都通过头节点找到,所以也就相当于都交换了。

注意库中swap的参数:

 

7.赋值重载

		list<T>& operator=(list<T> lt)//参数不能使用引用,使用引用再使用swap交换,原来赋值的值就被改了{swap(lt);return *this;}

一样是使用库中的swap,但是赋值的参数不能是引用,例如L1=L3,用引用再加上使用swap交换头节点的指向,L3就被改了,我们要求的是赋值是不能改变赋过来的对象的,内置类型也是(a=b)。 

 

8.insert

		void insert(iterator pos,const T& x){node* cur = pos._node;node* prev = cur->_prev;node* newnode = new node(x);prev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;}

链接节点即可,注意插入的值可能是任意类型,所以要用模版参数并且带上const与引用,防止是内置类型的值是const,传过来权限放大。

插入pos位置,也就是在pos前和pos位置之间插入。 

 

9.erase

		iterator erase(iterator pos){assert(pos != end());node* cur = pos._node;node* prev = cur->_prev;node* next = cur->_next;prev->_next = next;next->_prev = prev;delete pos._node;return iterator(next);}

注意删除完返回删除数据的下一个迭代器位置。

删除就是找前找后,删除节点,链接前后。

_node是new出来的,注意配套使用。

 

10.析构

void clear()
{iterator it = begin();while (it != end()){it= erase(it);//删除后返回的是下一个数据的位置,所以循环就走起来了}
}~list()
{clear();delete _head;_head = nullptr;
}

注意迭代器的erase删除后返回的是删除数据的下一个迭代器位置,所以用it接收就不怕迭代器失效了,同时循环也走起来了。 

11.头插头删,尾插尾删

		void push_back(const T& x){/*node* tail = _head->_prev;node* newnode = new node(x);tail->_next = newnode;newnode->_prev = tail;_head->_prev = newnode;newnode->_next = _head;*/insert(end(), x);}void push_front(const T& x){insert(begin(),x);}void pop_back(){erase(--end());}void pop_front(){erase(begin());}

直接复用即可。 

12.完整代码+简单测试

封装的反向迭代器: 

#pragma oncenamespace my_iterator
{template<class Iterator,class Ref,class Ptr>struct ReverseIterator{typedef ReverseIterator<Iterator,Ref,Ptr> self;Iterator _cur;ReverseIterator(Iterator it):_cur(it){}Ref operator*(){Iterator tmp = _cur;//因为要--,而解引用是不能改值的,所以用tmp改并返回--tmp;return *tmp;}Ptr operator->(){return &operator*();}self operator++(){--_cur;//直接的++--就能直接改了,所以可以直接返回原对象return *this;}self operator--(){++_cur;return *this;}bool operator!=(const self& s){return _cur != s._cur;}};
}
#pragma once
#include "my_iterator.h"#include <iostream>
#include <assert.h>
#include <list>using namespace my_iterator;
using namespace std;namespace my_list
{template<class T>struct list_node{list_node<T>* _prev;list_node<T>* _next;T _data;list_node(const T& x= T())//这里不给缺省值可能会因为没有默认构造函数而编不过:_prev(nullptr),_next(nullptr),_data(x){}};template<class T,class Ref,class Ptr>struct _list_iterator{typedef list_node<T> node;typedef _list_iterator<T, Ref, Ptr> self;node* _node;//对迭代器也就是节点的指针进行封装,因为list迭代器是不能直接++的_list_iterator(node* n):_node(n){}Ref operator*()//返回的必须是引用,不然改变不了外面的对象的成员,要支持对自己解引用改变值就要用应用{return _node->_data;}Ptr operator->(){return &(_node->_data);//返回地址,再解引用直接访问数据}self& operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(*this);//默认的拷贝构造可以,因为没有深拷贝_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}};template<class T>class list{typedef list_node<T> node;public:typedef _list_iterator<T, T&, T*> iterator;typedef _list_iterator<T, const T&, const T*> const_iterator;typedef ReverseIterator<iterator,T&,T*> reverse_iterator;typedef ReverseIterator<iterator, const T&, const T*> const_reverse_iterator;void empty_Init(){_head = new node;_head->_next = _head;_head->_prev = _head;}list(){empty_Init();}template<class Iterator>list(Iterator first, Iterator end){empty_Init();//别忘加上哨兵位,没有哨兵位识别不了endwhile (first != end){push_back(*first);first++;//这里的++first会调用重载的,因为传过来的是一个迭代器}}//传统的拷贝构造//list(const list<T>& lt)//{//	empty_Init();//	for (auto e : lt)//	{//		push_back(e);//this->push_back//	}//}void swap(list<T>& tmp)//要使用库中的swap,而库中的swap就不带const;况且交换的是头节点,const修饰的就不能修改指向{std::swap(_head, tmp._head);}//现代的拷贝构造list(const list<T>& lt){empty_Init();list<T> tmp(lt.begin(), lt.end());//为什么还要多一个变量,因为下面swap的参数没有const,而拷贝构造要加constswap(tmp);//this->swap(tmp)}list<T>& operator=(list<T> lt)//参数不能使用引用,使用引用再使用swap交换,原来赋值的值就被改了{swap(lt);return *this;}void clear(){iterator it = begin();while (it != end()){it= erase(it);//删除后返回的是下一个数据的位置,所以循环就走起来了}}~list(){clear();delete _head;_head = nullptr;}iterator begin(){return iterator(_head->_next);}iterator end(){return iterator(_head);//哨兵位就是end}const_iterator begin() const//本身const迭代器是让迭代器指向的内容不能修改,但是这样用const修饰迭代器本身也不能修改了{return const_iterator(_head->_next);}const_iterator end() const{return const_iterator(_head);}reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}void push_back(const T& x){/*node* tail = _head->_prev;node* newnode = new node(x);tail->_next = newnode;newnode->_prev = tail;_head->_prev = newnode;newnode->_next = _head;*/insert(end(), x);}void push_front(const T& x){insert(begin(),x);}void pop_back(){erase(--end());}void pop_front(){erase(begin());}void insert(iterator pos,const T& x){node* cur = pos._node;node* prev = cur->_prev;node* newnode = new node(x);prev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;}iterator erase(iterator pos){assert(pos != end());node* cur = pos._node;node* prev = cur->_prev;node* next = cur->_next;prev->_next = next;next->_prev = prev;delete pos._node;return iterator(next);}private:node* _head;};void print_list(const list<int>& lt){list<int>::const_iterator it = lt.begin();//不能直接这样写,传递过来的this指针也是const list<int>*,权限放大了,要提供const版本while (it != lt.end()){cout << *it << " ";++it;}cout << endl;}void test_list1(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);list<int>::iterator it = lt.begin();//=调用默认的拷贝构造,是浅拷贝,但是可以,让it也指向begin的位置while (it != lt.end()){cout << *it << " ";++it;}cout << endl;for (auto e : lt){cout << e << " ";}cout << endl;print_list(lt);}struct AA{int _a1;int _a2;AA(int a1 = 0, int a2 = 0):_a1(a1), _a2(a2){}};void test_list2(){list<AA> lt;lt.push_back(AA(1, 1));lt.push_back(AA(2, 2));lt.push_back(AA(3, 3));list<AA>::iterator it = lt.begin();while (it != lt.end()){//cout << (*it)._a1 << " "<<(*it)._a2<<endl;cout << it->_a1 << " " << it->_a2 << endl;//面对这样的类型,需要重载->,.也可以访问,但是有点别扭++it;}cout << endl;}void test_list3(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);auto pos = lt.begin();++pos;lt.insert(pos, 20);for (auto e : lt){cout << e << " ";}cout << endl;lt.push_back(100);lt.push_front(1000);for (auto e : lt){cout << e << " ";}cout << endl;lt.pop_back();lt.pop_front();for (auto e : lt){cout << e << " ";}cout << endl;}void test_list4(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);for (auto e : lt){cout << e << " ";}cout << endl;lt.clear();for (auto e : lt){cout << e << " ";}cout << endl;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(40);for (auto e : lt){cout << e << " ";}cout << endl;}void test_list5(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);for (auto e : lt){cout << e << " ";}cout << endl;list<int> lt2(lt);for (auto e : lt2){cout << e << " ";}cout << endl;list<int> lt3;lt3.push_back(10);lt3.push_back(20);lt3.push_back(30);for (auto e : lt3){cout << e << " ";}cout << endl;lt2 = lt3;for (auto e : lt2){cout << e << " ";}cout << endl;}void test_list6(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);list<int>::iterator it = lt.begin();//=调用默认的拷贝构造,是浅拷贝,但是可以,让it也指向begin的位置while (it != lt.end()){(*it) *= 2;cout << *it << " ";++it;}cout << endl;list<int>::reverse_iterator rit = lt.rbegin();while (rit != lt.rend()){cout << *rit << " ";++rit;}cout << endl;/*for (auto e : lt){cout << e << " ";}cout << endl;print_list(lt);*/}}

总结:

重点在迭代器与反向迭代器的的封装,其它的内容与其它的容器大致相同。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/823320.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

你也许不知道的 Confluence 快捷操作

Confluence 是一种企业知识管理和协作平台&#xff0c;用于创建、共享和组织团队的文档、知识和想法。它支持团队成员进行实时协作、评论和编辑文档&#xff0c;提供了强大的搜索功能&#xff0c;方便用户快速找到需要的信息。 Confluence 快捷键解析&#xff0c;标注了对应的…

创新力作 | 模块化快建办公训练中心盛大开业

在上海国际旅游度假区的湖畔&#xff0c;由优积科技建造的城市赛艇中心如同一幅动人的画卷&#xff0c;展现在世人面前。这座赛艇中心不仅是赛艇运动的圣地&#xff0c;更是一个融合了技术创新与建筑美学的多功能交流平台&#xff0c;体现了上海这座城市的精神底色和对赛艇文化…

基于springboot实现人口老龄化社区服务与管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现人口老龄化社区服务与管理系统演示 摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了人口老龄化社区服务与管理平台的开发全过程。通过分析人口老龄化社区服务与管理平台方面的不足&#xff…

网络编程(现在不重要)

目录 网络编程三要素与InetAddress类的使用 软件架构 面临的主要问题 网络编程三要素&#xff08;对应三个问题&#xff09; InetAddress的使用 TCP与UDP协议剖析与TCP编程案例&#xff08;了解&#xff09; TCP协议 UDP协议 例子 UDP、URL网络编程 URL&#xff1a;&…

一夜爆红的4款国产软件,却一度被大众误以为是外国人开发

在现今高度信息化的时代&#xff0c;计算机已经深深地渗透到了我们生活的每一个角落。 从日常的办公学习到娱乐休闲&#xff0c;几乎都离不开计算机技术的支持。而在这背后&#xff0c;软件作为计算机的灵魂&#xff0c;其发展历史可谓波澜壮阔。 中国软件产业经过多年的积累和…

node express 请求参数接收方式汇总

express 安装使用 express官网 express 是node.js 中写后端服务比较流行的框架。 安装express npm install -g express安装 express-generator 相当于vue的cli 用来快速生成express项目 npx express-generator生成项目mynode -e是使用ejs模版 express -e mynodeexpress生成器生…

2024电容笔专业对比评测:西圣、倍思、绿联哪款平替电容笔更好用?

在当今学习和工作环境中&#xff0c;iPad作为一种多功能的学习和生产力工具&#xff0c;受到越来越多人的青睐与需求。然而&#xff0c;要充分发挥iPad的功能&#xff0c;一个优质的电容笔是必不可少的配件之一。电容笔不仅可以帮助用户进行手写笔记、绘画创作&#xff0c;还能…

新手做抖音小店,想要快速起店,抓住这两点很关键

大家好&#xff0c;我是电商笨笨熊 抖音小店一定是近几年来爆火的电商项目&#xff0c;凭借着直播电商的方式在短短几年内迅速崛起&#xff0c;成为现在人尽皆知的电商项目。 然而在抖店里&#xff0c;不少进入的玩家都是新手&#xff0c;甚至都是盲目入店&#xff0c;没有任…

【Unity】Feature has expired(H0041)

【背景】 在一台很久不用的电脑上更新了个人License&#xff0c;并导入了云项目&#xff0c;打开时却报错&#xff1a; 【分析】 网上查说要删缓存等等&#xff0c;试过都不行。重装Hub也不行。 这种环境类型的原因很难从信息入手定位错误。 所以我自己检查项目上有什么问题…

MATLAB 浮点数 转化为 定点数

a fi(v,s,w,f) 一个 fi 对象&#xff0c;其值为 v&#xff0c;符号性为 s&#xff0c;字长为 w&#xff0c;小数长度为 f。 AD9361 a fi(0.707,1,12,11)

angular node版本问题导致运行出错时应该怎么处理

如下图所示&#xff1a; 处理方式如下&#xff1a; package.json中start跟build中添加&#xff1a;SET NODE_OPTIONS--openssl-legacy-provider即可

还原matlab编辑器窗口和主窗口分开的问题

问题 matlab不知道早点的&#xff0c;点击运行后会弹出新的窗口&#xff0c;咋整都恢复不了 解决方案 首先&#xff0c;在编辑器窗口下&#xff0c;按ctrlshiftD&#xff0c;此时编辑器窗口和主窗口就合并了&#xff0c;问题解决。

TCP的一些功能详述

文章制作不易&#xff0c;望各位大佬多多点赞&#xff0c;球球各位啦&#xff01;&#xff01;&#xff01;&#xff01; 目录 1.TCP的简介 2.TCP协议中部分数据的理解 1.端口号 2.序列号 3.四位首部长度 4.6位保留位 5. 16位校验和 6.数据&#xff08;TCP的载荷&#…

CC254X 8051芯片手册介绍

1 8051CPU 8051是一种8位元的单芯片微控制器&#xff0c;属于MCS-51单芯片的一种&#xff0c;由英特尔(Intel)公司于1981年制造。Intel公司将MCS51的核心技术授权给了很多其它公司&#xff0c;所以有很多公司在做以8051为核心的单片机&#xff0c;如Atmel、飞利浦、深联华等公…

mybatis的使用技巧7——mysql中in,exists,join的用法和区别

在实际项目开发中&#xff0c;sql查询中的连表查询和子查询用的是最多的&#xff0c;但是很多人对于in&#xff0c;exists&#xff0c;join的用法认识不足&#xff0c;随意运用&#xff0c;这种情况如果在大数据量查询时&#xff0c;会存在很大的隐患。 一.子查询&#xff08;…

【创建型模式】工厂方法模式

一、简单工厂模式 1.1 简单工厂模式概述 简单工厂模式又叫做静态工厂方法模式。 目的&#xff1a;定义一个用于创建对象的接口。实质&#xff1a;由一个工厂类根据传入的参数&#xff0c;动态决定应该创建哪一个产品类(这些产品类继承自一个父类或接口)的实例。 简单工厂模式…

MT2046 巨大的错误

1.暴力代码 2/10 #include <bits/stdc.h> using namespace std; int n; int a[25]; int b[25]; int ans 0; bool err() {for (int i 1; i < n; i){if (a[i] b[i]){return false;}}return true; } int main() {cin >> n;for (int i 1; i < n; i){a[i] i…

【Mysql数据库进阶01】窗口函数

窗口函数 1 定义2 聚合窗口函数2.1 默认效果/累计效果2.2 前面两行当前一行2.3 前面一行当前一行后面一行 3 排名窗口函数3.1 排名函数3.1.1 排名函数案例 3.2 累积分布 4 取值窗口函数 1 定义 完整的窗口函数定义如下: window_function([expression]) over(partition byorde…

【nnUNetv2进阶】五、nnUNetv2 魔改网络-小试牛刀-加入注意力机制SpatialAttention

nnUNet是一个自适应的深度学习框架&#xff0c;专为医学图像分割任务设计。以下是关于nnUNet的详细解释和特点&#xff1a; 自适应框架&#xff1a;nnUNet能够根据具体的医学图像分割任务自动调整模型结构、训练参数等&#xff0c;从而避免了繁琐的手工调参过程。 自动化流程&a…

H3C交换机ACL部分规则不生效问题

问题描述 H3C交换机ACL部分规则不生效问题 H3C交换机配置ACL后&#xff0c;规则在100左右&#xff0c;约10个接口下调用后&#xff0c;单独 permit 4个指定源、目IP地址的流量。但是只有前2个生效&#xff0c;后边2个相同的配置不生效。 问题原因 ACL性能不够的问题 dis q…