【训练营】DateWhale——动手学大模型应用开发(更新中)

文章目录

  • 写在前面
    • 大模型简介
      • LLM简介
      • RAG简介
      • LangChain开发框架
      • 开发LLM应用的整体流程

写在前面

大模型时代从GPT爆发开始到现在已有一年多了,深度学习发展之快无法想象,一味感叹技术发展速度超越个人学习速度是没用的,倒不如花点时间参加一些活动,比如思考大模型时代下如何训练小模型呢?

大模型简介

LLM简介

在这里插入图片描述
毫无例外,openai的GPT系列是我们值得了解的一个重要模型,不过很可惜其并未开源,现在我们常用的GPT是3.5-turbo,可以执行各种任务,包括代码编写、数学问题求解、写作建议等。
其余模型见datawhale的开源学习文档。

RAG简介

大型语言模型(LLM)相较于传统的语言模型具有更强大的能力,然而在某些情况下,它们仍可能无法提供准确的答案。为了解决大型语言模型在生成文本时面临的一系列挑战,提高模型的性能和输出质量,研究人员提出了一种新的模型架构:检索增强生成(RAG, Retrieval-Augmented Generation)。该架构巧妙地整合了从庞大知识库中检索到的相关信息,并以此为基础,指导大型语言模型生成更为精准的答案,从而显著提升了回答的准确性与深度。

由于基于网络公开数据大量训练,应用于实际业务场景时基础大模型无法满足我们的实际业务需求,主要有以下几方面原因:

  • 知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是构建于网络公开的数据,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。
  • 幻觉问题:所有的AI模型的底层原理都是基于数学概率,其模型输出实质上是一系列数值运算,大模型也不例外,所以它有时候会一本正经地胡说八道,尤其是在大模型自身不具备某一方面的知识或不擅长的场景。而这种幻觉问题的区分是比较困难的,因为它要求使用者自身具备相应领域的知识。
  • 数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。这也导致完全依赖通用大模型自身能力的应用方案不得不在数据安全和效果方面进行取舍。

在这里插入图片描述
RAG的架构如图中所示,简单来讲,RAG就是通过检索获取相关的知识并将其融入Prompt,让大模型能够参考相应的知识从而给出合理回答。因此,可以将RAG的核心理解为“检索+生成”,前者主要是利用向量数据库的高效存储和检索能力,召回目标知识;后者则是利用大模型和Prompt工程,将召回的知识合理利用,生成目标答案

通常我们有新数据来的时候,往往我们会将模型在新数据上进行微调,但是RAG确是另外一种思路。RAG和Finetune的对比如下。
在这里插入图片描述

LangChain开发框架

LangChain 框架是一个开源工具,充分利用了大型语言模型的强大能力,以便开发各种下游应用。它的目标是为各种大型语言模型应用提供通用接口,从而简化应用程序的开发流程。
在这里插入图片描述
LangChain 主要由以下 6 个核心组件组成:

  • 模型输入/输出(Model I/O):与语言模型交互的接口
  • 数据连接(Data connection):与特定应用程序的数据进行交互的接口
  • 链(Chains):将组件组合实现端到端应用。比如后续我们会将搭建检索问答链来完成检索问答。
  • 记忆(Memory):用于链的多次运行之间持久化应用程序状态;
  • 代理(Agents):扩展模型的推理能力。用于复杂的应用的调用序列;
  • 回调(Callbacks):扩展模型的推理能力。用于复杂的应用的调用序列;

开发LLM应用的整体流程

  • 传统 AI 开发:需要首先构造训练集、测试集、验证集,通过在训练集上训练模型、在测试集上调优模型、在验证集上最终验证模型效果来实现性能的评估。
  • 大模型开发:流程更为灵活和敏捷。从实际业务需求出发构造小批量验证集,设计合理 Prompt 来满足验证集效果。然后,将不断从业务逻辑中收集当下 Prompt 的 Bad Case,并将 Bad Case 加入到验证集中,针对性优化 Prompt,最后实现较好的泛化效果。

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/822805.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux之 USB驱动框架-USB总线核心和主控驱动(4)

一、USB设备描述符 一个USB设备描述符中可以有多个配置描述符,即USB设备可以有多种配置;一个配置描述符中可以有多个接口描述符,即USB设备可以支持多种功能(接口);一个接口描述符中可以有多个端点描述符。 …

5个常见的前端手写功能:New、call apply bind、防抖和节流、instanceof、ajax

实现New 首先创建一个新的空对象设置原型,将对象的原型设置为函数的prototype对象让函数的this指向这个对象,执行构造函数的代码判断函数的返回值类型,如果是值类型,返回创建的对象。如果是引用类型,就返回这个引用类…

网站创建的流程是什么

网站的创建过程包括几个主要的步骤,其中涉及到一系列的决策和实践操作。下面我将详细介绍网站创建的流程,帮助读者了解如何创建一个成功的网站。 第一步:确定网站目标和功能 在创建网站之前,你需要明确自己网站的目标和功能。是用…

【剪映专业版】07素材导入与界面认识

视频课程:B站有知公开课【剪映电脑版教程】 点击开始创作后生成新的草稿 单击更改草稿名称 导入数量没有限制 根据选中素材创建文件夹:选中素材,单击右键 智能镜头分割:选中素材,单击右键,用于不同场景…

【Git】安装 Git

文章目录 1. CentOS 下安装2. Ubuntu 下安装 Git 是开放源代码的代码托管工具,最早是在 Linux 下开发的。开始也只能应用于 Linux 平台,后面慢慢的被移植到 Windows 下。现在,Git 可以在 Linux、Unix、Mac 和 Windows 这几大平台上正常运行了…

力扣2923、2924.找到冠军I、II---(简单题、中等题、Java、拓扑排序)

目录 一、找到冠军I 思路描述: 代码: 二、找到冠军II 思路描述: 代码: 一、找到冠军I 一场比赛中共有 n 支队伍,按从 0 到 n - 1 编号。 给你一个下标从 0 开始、大小为 n * n 的二维布尔矩阵 grid 。对于满足…

终于看到一个不在 Backbone上研究 ReNet的了!直接优化小目标检测性能,不卷ImageNet-1K数据集!

终于看到一个不在 Backbone上研究 ResNet的了!直接优化小目标检测性能,不卷ImageNet-1K数据集! 前言 传统的基于深度学习的目标检测网络在数据预处理阶段常通过调整图像大小以达到特征图中的统一尺寸和尺度。调整大小的目的是为了便于模型传播…

吴恩达llama课程笔记:第六课code llama编程

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。Meta公司基于llama2发布了code llama,用于代码生成,补全等,Code Llama拥有7B、13B和34B三种版本。 吴恩达教授推出了全新的Llama课程&a…

OceanBase 4.3 列存存储格式和列存索引存储格式

以 t1 表和索引为例子,下面两张图说明了存储层如何存储数据。 create table t1 (id1 int, id2 int, name varchar(10), salary int, primary key(id1, id2)) with column group (each column);create index idx (name) storing(salary) with column group(each co…

基于GIS、python机器学习技术的地质灾害风险评价与信息化建库应用

结合项目实践案例和科研论文成果进行讲解。入门篇,ArcGIS软件的快速入门与GIS数据源的获取与理解;方法篇,致灾因子提取方法、灾害危险性因子分析指标体系的建立方法和灾害危险性评价模型构建方法;拓展篇,GIS在灾害重建…

vue elmentui 可编辑table 实现

废话不多说上图: 1.可编辑input 2.可编辑下来框 3.点击chechbox 4.可编辑radio 其实后面两种可以直接显示值 需要修改直接改就行 保持风格统一所以就做了点击之后出现修改功能 上代码,不要哔哔 哈哈 粗暴 真得是曲不离口 拳不离手, 几天…

【力扣】45. 跳跃游戏 II

Problem: 45. 跳跃游戏 II 文章目录 问题思路复杂度Code 问题 思路 核心思路,例如nums[i]5,那么最远能跳五步; //那么在这接下来1-5范围内,哪个能让我跳的最远,这个最远指的是 -------------------------------------…

代码随想录图论

1. 所有可能的路径 class Solution:def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]:def dfs(graph, result, path, root): #result 返回结果, path记录路径, root记录遍历到了第几个节点if root len(graph) - 1: #如果遍历到最后…

如何让多人同时扫码看图?图片转二维码的制作方法

现在经常会发现需要通过扫描二维码的方式来获取图片信息,这种方式可以让很多人能够同时获取图片信息,有利于提升传播的效率和用户体验。那么如何使用图片二维码生成器来在线制作二维码呢?其实步骤很简单,只需要在电脑3步就可以轻松…

Solana 上创建自己的 SLPToken:简明指南

Solana 定义 Solana 是由 Solana Labs 创建的区块链平台,旨在提供高吞吐量和低延迟的去中心化应用(DApps)开发环境。它采用一系列创新技术,如 PoH(Proof of History)共识机制和 Tower BFT(BFT …

大模型预测结果导入到Doccano,人工修正预测不准的数据

背景 使用大语言模型做实体识别的实验时,发现大模型关于实体的边界预测一直不准。 主要原因在于当时找了很多同学标注数据,由于不同组同学关于实体的边界没有统一,故导致数据集中实体边界也没统一。 (找太多人标,会有…

HalconLen2-示例程序分析

dev_update_window(off) dev_open_window(0, 0, 512, 512, black, WindowHandle) //打开窗口 stop() //程序中断 *dev_close_window() //关闭窗口 read_image (Bond, die/die_03) //读取图片 dev_display(Bond) //显示图片 set_display_font(WindowHandle, 16, mono, true, fal…

#陶晶驰串口屏使用

1.陶晶驰串口屏输入要连接的wifi信息实现 (1)选择文本控件 (2)给文本控件配置输入键盘,id代表用户名,password代表wifi密码(注意wifi的频段需要为2.4GHz) (3&#xff0…

【结构型模式】适配器模式

一、适配器模式概述 适配器模式的定义-意图:将一个类的接口转换成客户希望的另一个接口。适配器模式让那些接口不兼容的类可以一起工作。(对象结构模式->对象适配器/类结构模式->类适配器) 适配器模式包含三个角色:目标(Target)角色、适配者(Adapt…

打破常规,重新定义PMP备考之路

今天我想和大家聊聊一个我们都不陌生的话题——PMP备考。你是不是也在备考的苦海中挣扎,或是听说过各种“速成”的神话?🤔 最近读到一篇文章(来着圣略PMP培训讲师老杨),让我对PMP备考有了新的认识。原来&a…