【深度学习】【机器学习】用神经网络进行入侵检测,NSL-KDD数据集,基于机器学习(深度学习)判断网络入侵,网络攻击,流量异常【3】

之前用NSL-KDD数据集做入侵检测的项目是:
【1】https://qq742971636.blog.csdn.net/article/details/137082925
【2】https://qq742971636.blog.csdn.net/article/details/137170933

有人问我是不是可以改代码,我说可以。

训练

我将NSL_KDD_Final_1.ipynb的代码改为了train.py,效果还不错。
在这里插入图片描述

前处理也是需要onehot编码:
在这里插入图片描述

也会归一化:

在这里插入图片描述

模型:

# 双向RNN
batch_size = 32
model = Sequential()
model.add(Convolution1D(64, kernel_size=122, padding="same", activation="relu", input_shape=(122, 1)))
model.add(MaxPooling1D(pool_size=(5)))
model.add(BatchNormalization())
model.add(Bidirectional(LSTM(64, return_sequences=False)))
model.add(Reshape((128, 1), input_shape=(128,)))
model.add(MaxPooling1D(pool_size=(5)))
model.add(BatchNormalization())
model.add(Bidirectional(LSTM(128, return_sequences=False)))
model.add(Dropout(0.5))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
Model: "sequential"
┌─────────────────────────────────┬────────────────────────┬───────────────┐
│ Layer (type)                    │ Output Shape           │       Param # │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv1d (Conv1D)(None, 122, 64)7,872 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling1d (MaxPooling1D)(None, 24, 64)0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ batch_normalization             │ (None, 24, 64)256 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ bidirectional (Bidirectional)(None, 128)66,048 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ reshape (Reshape)(None, 128, 1)0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling1d_1 (MaxPooling1D)(None, 25, 1)0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ batch_normalization_1           │ (None, 25, 1)4 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ bidirectional_1 (Bidirectional)(None, 256)133,120 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout (Dropout)(None, 256)0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense (Dense)(None, 5)1,285 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ activation (Activation)(None, 5)0 │
└─────────────────────────────────┴────────────────────────┴───────────────┘Total params: 208,585 (814.79 KB)Trainable params: 208,455 (814.28 KB)Non-trainable params: 130 (520.00 B)

在训练过程中,效果已经不错:
在这里插入图片描述

输入特征:

list(combined_data_X.columns)
Out[4]: 
['duration','src_bytes','dst_bytes','land','wrong_fragment','urgent','hot','num_failed_logins','logged_in','num_compromised','root_shell','su_attempted','num_root','num_file_creations','num_shells','num_access_files','num_outbound_cmds','is_host_login','is_guest_login','count','srv_count','serror_rate','srv_serror_rate','rerror_rate','srv_rerror_rate','same_srv_rate','diff_srv_rate','srv_diff_host_rate','dst_host_count','dst_host_srv_count','dst_host_same_srv_rate','dst_host_diff_srv_rate','dst_host_same_src_port_rate','dst_host_srv_diff_host_rate','dst_host_serror_rate','dst_host_srv_serror_rate','dst_host_rerror_rate','dst_host_srv_rerror_rate','protocol_type_icmp','protocol_type_tcp','protocol_type_udp','service_IRC','service_X11','service_Z39_50','service_aol','service_auth','service_bgp','service_courier','service_csnet_ns','service_ctf','service_daytime','service_discard','service_domain','service_domain_u','service_echo','service_eco_i','service_ecr_i','service_efs','service_exec','service_finger','service_ftp','service_ftp_data','service_gopher','service_harvest','service_hostnames','service_http','service_http_2784','service_http_443','service_http_8001','service_imap4','service_iso_tsap','service_klogin','service_kshell','service_ldap','service_link','service_login','service_mtp','service_name','service_netbios_dgm','service_netbios_ns','service_netbios_ssn','service_netstat','service_nnsp','service_nntp','service_ntp_u','service_other','service_pm_dump','service_pop_2','service_pop_3','service_printer','service_private','service_red_i','service_remote_job','service_rje','service_shell','service_smtp','service_sql_net','service_ssh','service_sunrpc','service_supdup','service_systat','service_telnet','service_tftp_u','service_tim_i','service_time','service_urh_i','service_urp_i','service_uucp','service_uucp_path','service_vmnet','service_whois','flag_OTH','flag_REJ','flag_RSTO','flag_RSTOS0','flag_RSTR','flag_S0','flag_S1','flag_S2','flag_S3','flag_SF','flag_SH']

类别输出:
Class
Normal 77232
DoS 53387
Probe 14077
R2L 3702
U2R 119
Name: count, dtype: int64

推理

推理代码:

# 加载测试集
import numpy as np
import pandas as pd
from keras import Sequential
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Embedding
from keras.layers import LSTM, SimpleRNN, GRU, Bidirectional, BatchNormalization, Convolution1D, MaxPooling1D, Reshape, \GlobalAveragePooling1D
from keras.utils import to_categorical
import sklearn.preprocessing
from sklearn import metrics
from keras.models import load_model# 双向RNN
batch_size = 32
model = Sequential()
model.add(Convolution1D(64, kernel_size=122, padding="same", activation="relu", input_shape=(122, 1)))
model.add(MaxPooling1D(pool_size=(5)))
model.add(BatchNormalization())
model.add(Bidirectional(LSTM(64, return_sequences=False)))
model.add(Reshape((128, 1), input_shape=(128,)))
model.add(MaxPooling1D(pool_size=(5)))
model.add(BatchNormalization())
model.add(Bidirectional(LSTM(128, return_sequences=False)))
model.add(Dropout(0.5))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
# 加载之前保存的模型
# model = load_model('oldNSL_KDD.h5')
# 在确保模型架构完全一致的情况下,只加载权重
model.load_weights('oldNSL_KDD.h5')data = pd.read_excel('combined_data_X.xlsx', index_col=0)
input_features = data.iloc[0, :].values# 因为模型期望的输入形状是 (batch_size, timesteps, features_per_timestep)
# 我们需要将输入数据reshape成 (1, 122, 1) 形状,这里 1 是batch size
input_features = input_features.reshape(1, 122, 1)# 使用模型进行推理
predictions = model.predict(input_features)# 打印预测的概率,predictions将是一个形状为(1, 5)的数组,包含5个输出类别的概率
print(predictions)# Class
# Normal    77232
# DoS       53387
# Probe     14077
# R2L        3702
# U2R         119
# Name: count, dtype: int64# 输出top1的类别和概率
top1_class = np.argmax(predictions)
top1_probability = predictions[0, top1_class]
print(f"Top1 class: {top1_class}, probability: {top1_probability}")

推理结果:

D:\ProgramData\miniconda3\envs\py310\python.exe E:\workcode\pytestx\pythonProject\ruqinx\b_lstm\val.py 
2024-04-16 17:02:44.386562: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-04-16 17:02:45.090275: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
D:\ProgramData\miniconda3\envs\py310\lib\site-packages\keras\src\layers\convolutional\base_conv.py:99: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.super().__init__(
2024-04-16 17:02:46.745679: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
D:\ProgramData\miniconda3\envs\py310\lib\site-packages\keras\src\layers\reshaping\reshape.py:39: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.super().__init__(**kwargs)
Model: "sequential"
┌─────────────────────────────────┬────────────────────────┬───────────────┐
│ Layer (type)                    │ Output Shape           │       Param # │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv1d (Conv1D)(None, 122, 64)7,872 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling1d (MaxPooling1D)(None, 24, 64)0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ batch_normalization             │ (None, 24, 64)256 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ bidirectional (Bidirectional)(None, 128)66,048 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ reshape (Reshape)(None, 128, 1)0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling1d_1 (MaxPooling1D)(None, 25, 1)0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ batch_normalization_1           │ (None, 25, 1)4 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ bidirectional_1 (Bidirectional)(None, 256)133,120 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout (Dropout)(None, 256)0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense (Dense)(None, 5)1,285 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ activation (Activation)(None, 5)0 │
└─────────────────────────────────┴────────────────────────┴───────────────┘Total params: 208,585 (814.79 KB)Trainable params: 208,455 (814.28 KB)Non-trainable params: 130 (520.00 B)
None
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 393ms/step
[[1.7173363e-06 9.9280131e-01 1.5588279e-05 7.0899338e-03 9.1460090e-05]]
Top1 class: 1, probability: 0.992801308631897Process finished with exit code 0

工程介绍

在这里插入图片描述

gradio前端展示界面

在这里插入图片描述

代码获取

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821125.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Day42:动态规划 LeedCode 01背包 416. 分割等和子集

01背包 1.确定dp数组以及下标的含义 dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。 那么可以有两个方向推出来dp[i][j] 2.确定递推公式 不放物品i:由dp[i - 1][j]推出,即背…

十大排序——9.桶排序

这篇文章我们来介绍一下桶排序 目录 1.介绍 2.代码实现 3.总结与思考 1.介绍 桶排序和计数排序一样,都不是基于比较进行排序的。 下面通过一个例子来理解一下桶排序吧。 首先,给你一个无序数组[ 20,18,28,66,25,31,67,30 ],然后&#…

Maven POM元素解析(二)

一、parent <parent>元素包含定位此项目将从中继承的父项目所需的信息。注意&#xff1a;此元素的子元素不是插值的&#xff0c;必须作为文字值给定。 ElementTypeDescriptiongroupIdString要从中继承的父项目的组id。artifactIdString要从中继承的父项目的项目id。ver…

PX6C mini IMU发送速率修改

PX6C mini IMU发送速率修改 提高波特率&#xff11;、命令行方式1.1 原始IMU数据1.2 飞控计算过后的IMU数据 2、更改启动文件 提高波特率 提高发布频率过后数据的传送量一下变的大起来了&#xff0c;首先需要提高波特率。 我使用的PX4 6C mini。更改参数SER_TEL2_BAUD设置和上…

【Entity Framework】你知道如何处理无键实体吗

【Entity Framework】你知道如何处理无键实体吗 文章目录 【Entity Framework】你知道如何处理无键实体吗一、概述二、定义无键实体类型数据注释 三、无键实体类型特征四、无键实体使用场景五、无键实体使用场景六、无键使用示例6.1 定义一个简单的Blog和Post模型&#xff1a;6…

高分二号卫星(GF-2):中国遥感科技的新高度

​高分二号卫星&#xff08;GF-2&#xff09;是中国在高分辨率地球观测领域的重要成就&#xff0c;其引入了先进的成像技术和灵活的数据获取模式&#xff0c;为地球资源监测、环境保护、城市规划等领域提供了强大的数据支持。本文将深入介绍高分二号卫星的技术特点、成像能力以…

【华为OD机试】执行任务赚积分【C卷|100分】

题目描述 现有N个任务需要处理&#xff0c;同一时间只能处理一个任务&#xff0c;处理每个任务所需要的时间固定为1。 每个任务都有最晚处理时间限制和积分值&#xff0c;在最晚处理时间点之前处理完成任务才可获得对应的积分奖励。 可用于处理任务的时间有限&#xff0c;请问在…

10.Vue2.x条件渲染—v-if、v-show

文章目录 条件渲染—v-if、v-show 条件渲染—v-if、v-show <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><title>条件渲染</title><script type"text/javascript" src"../js/vue…

Day 27 39. 组合总和 40.组合总和II 131.分割回文串

组合总和 给定一个无重复元素的数组 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的数字可以无限制重复被选取。 说明&#xff1a; 所有数字&#xff08;包括 target&#xff09;都是正整数。解集不能…

BatchNorm算法详解

BatchNorm算法详解 1 BatchNorm原理 BatchNorm通过对输入的每个mini-batch的数据进行标准化&#xff0c;使得网络的输入分布更加稳定。 在训练过程中&#xff0c;每轮迭代网络层的输入数据分布变化很大的话&#xff0c;使得数据抖动很大&#xff0c;导致权重变化也会很大&am…

自定义类型: 结构体 (详解)

本文索引 一. 结构体类型的声明1. 结构体的声明和初始化2. 结构体的特殊声明3. 结构体的自引用 二. 结构体内存对齐1. 对齐规则2. 为啥存在对齐?3. 修改默认对齐值 三. 结构体传参四. 结构体实现位段1. 什么是位段?2. 位段的内存分配3. 位段的应用4. 位段的注意事项 ​ 前言:…

二维相位解包理论算法和软件【全文翻译- 加权最小二乘相位解包裹-PCG(5.4)】

5.4 加权最小二乘相位 与路径跟踪法不同,最小二乘法不直接处理残差问题,因为它们是通过对残差进行积分以最小化梯度差来求解的。另一方面,加权最小二乘法使用预先确定的权重(如质量图)来避免通过残差积分。选择权重的目的是以某种方式适应残差,隔离低信噪比区域,或对所…

什么是上位机?入门指南

什么是上位机&#xff1f; 上位机&#xff08;SCADA&#xff0c;Supervisory Control and Data Acquisition&#xff09;是一种软件系统&#xff0c;用于监控和控制工业过程中的设备。它通常与传感器、执行器和其他自动化设备一起工作&#xff0c;以实时地监视过程状态、收集数…

【精读文献】Scientific data|2017-2021年中国10米玉米农田变化制图

论文名称&#xff1a;Mapping annual 10-m maize cropland changes in China during 2017–2021 第一作者及通讯作者&#xff1a;Xingang Li, Ying Qu 第一作者单位及通讯作者单位&#xff1a;北京师范大学地理学部 文章发表期刊&#xff1a;《Scientific data》&#xff08…

Angular 嵌套表单

1.假设我有一个 “添加用户“ 的需求&#xff0c;在用户的信息中&#xff0c;联系方式分为邮箱和手机号&#xff0c;这两个联系方式就可以作为一个嵌套的内部的表单。下面是实现方式&#xff1a; <form [formGroup]"userForm"> <input type"text"…

Token2049主办方遭遇假门票风波,韩国罗马基金会Charles Lee损失50万美元

加密货币——遍地黄金&#xff1f;还是遍地陷阱&#xff1f; 尽管伊朗空袭以色列导致中东局势愈发紧张&#xff0c;但加密社区对当地市场的热情丝毫没有受到影响&#xff0c;不出意外的话&#xff0c;Token 2049这场全球最受瞩目的加密货币盛会将于4月18至19日在迪拜如期举行&…

Buck变换电路

Buck变换电路 Buck变换电路是最基本的DC/DC拓扑电路&#xff0c;属于非隔离型直流变换器&#xff0c;其输出电压小于输入电压。Buck变换电路具有效率高、输出稳定、控制简单和成本低的优点&#xff0c;广泛应用于稳压电源、光伏发电、LED驱动和能量回收系统。 电路原理 Buck变…

PyCharm 2024.1 发布:全面升级,助力高效编程!

PyCharm 2024.1 发布&#xff1a;全面升级&#xff0c;助力高效编程&#xff01; 文章目录 PyCharm 2024.1 发布&#xff1a;全面升级&#xff0c;助力高效编程&#xff01;摘要引言 Hugging Face&#xff1a;模型和数据集的快速文档预览针对 JavaScript 和 TypeScript 的全行代…

力扣101. 对称二叉树(java)

思路&#xff1a; 一、验证 左右子树是否可翻转对称的&#xff1f; 二、分析左右子树情况&#xff1a; 1&#xff09;左右都也空 对称 2&#xff09;左右有一个为空 不对称 3&#xff09;左右都不为空&#xff0c;但数字不同 不对称 4&#xff09;左右都不为空&#xff0c;且数…

C++从入门到精通——类和对象(下篇)

1. 再谈构造函数 1.1 构造函数体赋值 在创建对象时&#xff0c;编译器通过调用构造函数&#xff0c;给对象中各个成员变量一个合适的初始值。 class Date { public:Date(int year, int month, int day){_year year;_month month;_day day;} private:int _year;int _mont…