RocketMQ 10 面试题FAQ

RocketMQ 面试FAQ

说说你们公司线上生产环境用的是什么消息中间件?

为什么要使用MQ?

因为项目比较大,做了分布式系统,所有远程服务调用请求都是同步执行经常出问题,所以引入了mq

解耦

系统耦合度降低,没有强依赖关系

异步

不需要同步执行的远程调用可以有效提高响应时间

削峰

请求达到峰值后,后端service还可以保持固定消费速率消费,不会被压垮

多个mq如何选型?

RabbitMQ

erlang开发,延迟比较低

RocketMQ

java开发,面向互联网集群化功能丰富

kafka

Scala开发,面向日志功能丰富

ActiveMQ

java开发,简单,稳定

小项目:ActiveMQ

大项目:RocketMQ或kafka、RabbitMq

RocketMQ由哪些角色组成,每个角色作用和特点是什么?

nameserver 无状态 动态列表

producer

broker

consumer

RocketMQ中的Topic和ActiveMQ有什么区别?

ActiveMQ

有destination的概念,即消息目的地

destination分为两类:

  • topic
    • 广播消息
  • queue
    • 队列消息

RocketMQ

RocketMQ的Topic是一组Message Queue的集合 ConsumeQueue

一条消息是广播消息还是队列消息由客户端消费决定

RocketMQ Broker中的消息被消费后会立即删除吗?

不会,每条消息都会持久化到CommitLog中,每个consumer连接到broker后会维持消费进度信息,当有消息消费后只是当前consumer的消费进度(CommitLog的offset)更新了。

那么消息会堆积吗?什么时候清理过期消息?

4.6版本默认48小时后会删除不再使用的CommitLog文件

  • 检查这个文件最后访问时间
  • 判断是否大于过期时间
  • 指定时间删除,默认凌晨4点

RocketMQ消费模式有几种?

消费模型由consumer决定,消费维度为Topic

集群消费

一组consumer同时消费一个topic,可以分配消费负载均衡策略分配consumer对应消费topic下的哪些queue

多个group同时消费一个topic时,每个group都会消费到数据

一条消息只会被一个group中的consumer消费,

广播消费

消息将对一 个Consumer Group 下的各个 Consumer 实例都消费一遍。即即使这些 Consumer 属于同一个Consumer Group ,消息也会被 Consumer Group 中的每个 Consumer 都消费一次。

消费消息时使用的是push还是pull?

在刚开始的时候就要决定使用哪种方式消费

两种:

DefaultLitePullConsumerImpl

DefaultMQPushConsumerImpl

两个实现 DefaultLitePullConsumerImpl DefaultMQPushConsumerImpl都实现了MQConsumerInner接口接口

名称上看起来是一个推,一个拉,但实际底层实现都是采用的长轮询机制,即拉取方式

broker端属性 longPollingEnable 标记是否开启长轮询。默认开启

为什么要主动拉取消息而不使用事件监听方式?

事件驱动方式是建立好长连接,由事件(发送数据)的方式来实时推送。

如果broker主动推送消息的话有可能push速度快,消费速度慢的情况,那么就会造成消息在consumer端堆积过多,同时又不能被其他consumer消费的情况

说一说几种常见的消息同步机制?

push:

如果broker主动推送消息的话有可能push速度快,消费速度慢的情况,那么就会造成消息在consumer端堆积过多,同时又不能被其他consumer消费的情况

pull:

轮训时间间隔,固定值的话会造成资源浪费

长轮询:

上连接 短连接(每秒) 长轮询

broker如何处理拉取请求的?

consumer首次请求broker

  • broker中是否有符合条件的消息
  • 有 ->
    • 响应consumer
    • 等待下次consumer的请求
  • 没有
    • 挂起consumer的请求,即不断开连接,也不返回数据
    • 挂起时间长短,写死在代码里的吗?长轮询写死,短轮询可以配
    • 使用consumer的offset,
      • DefaultMessageStore#ReputMessageService#run方法
        • 每隔1ms检查commitLog中是否有新消息,有的话写入到pullRequestTable
        • 当有新消息的时候返回请求
      • PullRequestHoldService 来Hold连接,每个5s执行一次检查pullRequestTable有没有消息,有的话立即推送

RocketMQ如何做负载均衡?

通过Topic在多broker种分布式存储实现

producer端

发送端指定Target message queue发送消息到相应的broker,来达到写入时的负载均衡

  • 提升写入吞吐量,当多个producer同时向一个broker写入数据的时候,性能会下降
  • 消息分布在多broker种,为负载消费做准备

每 30 秒从 nameserver获取 Topic 跟 Broker 的映射关系,近实时获取最新数据存储单元,queue落地在哪个broker中

在使用api中send方法的时候,可以指定Target message queue写入或者使用MessageQueueSelector

默认策略是随机选择:
  • producer维护一个index
  • 每次取节点会自增
  • index向所有broker个数取余
  • 自带容错策略
其他实现
  • SelectMessageQueueByHash
    • hash的是传入的args
  • SelectMessageQueueByRandom
  • SelectMessageQueueByMachineRoom 没有实现

也可以自定义实现MessageQueueSelector接口中的select方法

MessageQueue select(final List<MessageQueue> mqs, final Message msg, final Object arg);

可以自定义规则来选择mqs

如何知道mqs的,mqs的数据从哪儿来?

producer.start()方法

参考源码

  • 启动producer的时候会向nameserver发送心跳包
  • 获取nameserver中的topic列表
  • 使用topic向nameserver获取topicRouteData

TopicRouteData对象表示与某一个topic有关系的broker节点信息,内部包含多个QueueData对象(可以有多个broker集群支持该topic)和多个BrokerData信息(多个集群的多个节点信息都在该列表中)

producer加工TopicRouteData,对应的多节点信息后返回mqs。

consumer端

客户端完成负载均衡

  • 获取集群其他节点
  • 当前节点消费哪些queue
  • 负载粒度直到Message Queue
  • consumer的数量最好和Message Queue的数量对等或者是倍数,不然可能会有消费倾斜
  • 每个consumer通过balanced维护processQueueTable
    • processQueueTable为当前consumer的消费queue
    • processQueueTable中有
      • ProcessQueue :维护消费进度,从broker中拉取回来的消息缓冲
      • MessageQueue : 用来定位查找queue

DefaultMQPushConsumer默认 使用AllocateMessageQueueAveragely(平均分配)

当消费负载均衡consumer和queue不对等的时候会发生什么?

平均分配

在这里插入图片描述

环形分配

在这里插入图片描述

负载均衡算法

平均分配策略(默认)(AllocateMessageQueueAveragely)
环形分配策略(AllocateMessageQueueAveragelyByCircle)
手动配置分配策略(AllocateMessageQueueByConfig)
机房分配策略(AllocateMessageQueueByMachineRoom)
一致性哈希分配策略(AllocateMessageQueueConsistentHash)
靠近机房策略(AllocateMachineRoomNearby)

consumer启动流程参考源码

消息丢失

SendResult

producer在发送同步/异步可靠消息后,会接收到SendResult,表示消息发送成功

SendResult其中属性sendStatus表示了broker是否真正完成了消息存储

当sendStatus!="ok"的时候,应该重新发送消息,避免丢失

当producer.setRetryAnotherBrokerWhenNotStoreOK

消息重复消费

影响消息正常发送和消费的重要原因是网络的不确定性。

可能是因为consumer首次启动引起重复消费

需要设置consumer.setConsumeFromWhere

只对一个新的consumeGroup第一次启动时有效,设置从头消费还是从维护开始消费

你们怎么保证投递出去的消息只有一条且仅仅一条,不会出现重复的数据?

绑定业务key

如果消费了重复的消息怎么保证数据的准确性?

引起重复消费的原因

ACK

正常情况下在consumer真正消费完消息后应该发送ack,通知broker该消息已正常消费,从queue中剔除

当ack因为网络原因无法发送到broker,broker会认为词条消息没有被消费,此后会开启消息重投机制把消息再次投递到consumer

group

在CLUSTERING模式下,消息在broker中会保证相同group的consumer消费一次,但是针对不同group的consumer会推送多次

解决方案

数据库表

处理消息前,使用消息主键在表中带有约束的字段中insert

Map

单机时可以使用map ConcurrentHashMap -> putIfAbsent guava cache

Redis

使用主键或set操作

如何让RocketMQ保证消息的顺序消费

你们线上业务用消息中间件的时候,是否需要保证消息的顺序性?

如果不需要保证消息顺序,为什么不需要?假如我有一个场景要保证消息的顺序,你们应该如何保证?

  • 同一topic

  • 同一个QUEUE

  • 发消息的时候一个线程去发送消息

  • 消费的时候 一个线程 消费一个queue里的消息或者使用MessageListenerOrderly

  • 多个queue 只能保证单个queue里的顺序

应用场景是啥?

应用系统和现实的生产业务绑定,避免在分布式系统中多端消费业务消息造成顺序混乱

比如需要严格按照顺序处理的数据或业务

数据包装/清洗

数据:

import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
  1. 去掉import
  2. 统计某个字符出现次数

业务流程处理

返修过程

  1. 收件录入信息
  2. 信息核对
  3. 送入检修系统处理

电商订单

  1. 创建订单
  2. 检查库存预扣库存
  3. 支付
  4. 真扣库存

binlog同步

RocketMQ如何保证消息不丢失

  1. 生产端如何保证投递出去的消息不丢失:消息在半路丢失,或者在MQ内存中宕机导致丢失,此时你如何基于MQ的功能保证消息不要丢失?
  2. MQ自身如何保证消息不丢失?
  3. 消费端如何保证消费到的消息不丢失:如果你处理到一半消费端宕机,导致消息丢失,此时怎么办?

解耦的思路

发送方

发送消息时做消息备份(记日志或同步到数据库),判断sendResult是否正常返回

broker

节点保证

  • master接受到消息后同步刷盘,保证了数据持久化到了本机磁盘中
  • 同步写入slave
  • 写入完成后返回SendResult
consumer
  • 记日志
  • 同步执行业务逻辑,最后返回ack
  • 异常控制

磁盘保证

使用Raid磁盘阵列保证数据磁盘安全

网络数据篡改

内置TLS可以开启,默认使用crc32校验数据

消息刷盘机制底层实现

每间隔10ms,执行一次数据持久化操作

两种, 同步刷、异步刷

   public void run() {CommitLog.log.info(this.getServiceName() + " service started");while (!this.isStopped()) {try {this.waitForRunning(10);this.doCommit();} catch (Exception e) {CommitLog.log.warn(this.getServiceName() + " service has exception. ", e);}}

rocketMq的消息堆积如何处理

下游消费系统如果宕机了,导致几百万条消息在消息中间件里积压,此时怎么处理?

你们线上是否遇到过消息积压的生产故障?如果没遇到过,你考虑一下如何应对?

具体表现为 ui中转圈圈

对于大规模消息发送接收可以使用pull模式,手动处理消息拉取速度,消费的时候统计消费时间以供参考

保证消息消费速度固定,即可通过上线更多consumer临时解决消息堆积问题

如果consumer和queue不对等,上线了多台也在短时间内无法消费完堆积的消息怎么办?

  • 准备一个临时的topic

  • queue的数量是堆积的几倍

  • queue分不到多broker种

  • 上线一台consumer做消息的搬运工,把原来topic中的消息挪到新的topic里,不做业务逻辑处理,只是挪过去

  • 上线N台consumer同时消费临时topic中的数据

  • 改bug

  • 恢复原来的consumer,继续消费之前的topic

堆积时间过长消息超时了?

RocketMQ中的消息只会在commitLog被删除的时候才会消失,不会超时

堆积的消息会不会进死信队列?

不会,消息在消费失败后会进入重试队列(%RETRY%+consumergroup),多次(默认16)才会进入死信队列(%DLQ%+consumergroup)

你们用的是RocketMQ?那你说说RocketMQ的底层架构原理,磁盘上数据如何存储的,整体分布式架构是如何实现的?

零拷贝等技术是如何运用的?

使用nio的MappedByteBuffer调起数据输出

你们用的是RocketMQ?RocketMQ很大的一个特点是对分布式事务的支持,你说说他在分布式事务支持这块机制的底层原理?

分布式系统中的事务可以使用TCC(Try、Confirm、Cancel)、2pc来解决分布式系统中的消息原子性

RocketMQ 4.3+提供分布事务功能,通过 RocketMQ 事务消息能达到分布式事务的最终一致

RocketMQ实现方式

**Half Message:**预处理消息,当broker收到此类消息后,会存储到RMQ_SYS_TRANS_HALF_TOPIC的消息消费队列中

**检查事务状态:**Broker会开启一个定时任务,消费RMQ_SYS_TRANS_HALF_TOPIC队列中的消息,每次执行任务会向消息发送者确认事务执行状态(提交、回滚、未知),如果是未知,等待下一次回调。

**超时:**如果超过回查次数,默认回滚消息

TransactionListener的两个方法
executeLocalTransaction

半消息发送成功触发此方法来执行本地事务

checkLocalTransaction

broker将发送检查消息来检查事务状态,并将调用此方法来获取本地事务状态

本地事务执行状态

LocalTransactionState.COMMIT_MESSAGE

执行事务成功,确认提交

LocalTransactionState.ROLLBACK_MESSAGE

回滚消息,broker端会删除半消息

LocalTransactionState.UNKNOW

暂时为未知状态,等待broker回查

如果让你来动手实现一个分布式消息中间件,整体架构你会如何设计实现?

看过RocketMQ 的源码没有。如果看过,说说你对RocketMQ 源码的理解?

高吞吐量下如何优化生产者和消费者的性能?

消费

  • 同一group下,多机部署,并行消费

  • 单个consumer提高消费线程个数

  • 批量消费

    • 消息批量拉取
    • 业务逻辑批量处理

运维

  • 网卡调优
  • jvm调优
  • 多线程与cpu调优
  • Page Cache

再说说RocketMQ 是如何保证数据的高容错性的?

  • 在不开启容错的情况下,轮询队列进行发送,如果失败了,重试的时候过滤失败的Broker
  • 如果开启了容错策略,会通过RocketMQ的预测机制来预测一个Broker是否可用
  • 如果上次失败的Broker可用那么还是会选择该Broker的队列
  • 如果上述情况失败,则随机选择一个进行发送
  • 在发送消息的时候会记录一下调用的时间与是否报错,根据该时间去预测broker的可用时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/820060.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Testng测试框架(2)-测试用例@Test

测试方法用 Test 进行注释&#xff0c;将类或方法标记为测试的一部分。 Test() public void aFastTest() {System.out.println("Fast test"); }import org.testng.annotations.Test;public class TestExample {Test(description "测试用例1")public void…

如何通过Python向PDF添加文本水印_python给pdf文件加文字水印

先自我介绍一下&#xff0c;小编浙江大学毕业&#xff0c;去过华为、字节跳动等大厂&#xff0c;目前阿里P7 深知大多数程序员&#xff0c;想要提升技能&#xff0c;往往是自己摸索成长&#xff0c;但自己不成体系的自学效果低效又漫长&#xff0c;而且极易碰到天花板技术停滞…

频率传感器信号采集隔离转换模拟信号0-1KHz/0-5KHz/0-10KH转0-2.5V/0-5V/0-10V/0-10mA/0-20mA/4-20mA

主要特性: >> 精度等级&#xff1a;0.2 级 >> 全量程内极高的线性度&#xff08;非线性度<0.1%&#xff09; >> 辅助电源/信号输入/信号输出&#xff1a; 2500VDC 三隔离 >> 辅助电源&#xff1a;5VDC&#xff0c;12VDC&#xff0c;24VDC 等单…

Redis Desktop Manager 中文--强大的Redis数据库管理工具

Redis Desktop Manager&#xff08;简称RDM&#xff09;是一款开源且功能强大的图形化Redis管理工具。它支持Windows、macOS和Linux等多平台&#xff0c;为Redis数据库提供了直观友好的管理界面。通过RDM&#xff0c;用户可以轻松连接多个Redis服务器&#xff0c;管理连接信息&…

【自媒体创作利器】AI白日梦+ChatGPT 三分钟生成爆款短视频

AI白日梦https://brmgo.com/signup?codey5no6idev 引言 随着人工智能&#xff08;AI&#xff09;技术的快速发展&#xff0c;AI在各个领域都展现出了强大的应用潜力。其中&#xff0c;自然语言处理技术的进步使得智能对话系统得以实现&#xff0c;而ChatGPT作为其中的代表之一…

MyBatis操作数据库(3)

其它查询操作 #{}和${} MyBatis参数赋值有两种方式, 咱们前面使用了#{}进行赋值, 接下来来看两者的区别: #{}和${}的使用 1.先看Integer类型的参数: Select("select username, password, age, gender, phone from userinfo where id #{id}") UserInfo queryByI…

攻防世界---easyRE1

1.下载附件&#xff0c;打开后有两个文件 2.对32查壳 3.对64查壳 4.IDA分析&#xff0c;这里打开之后找到main函数点击main函数后按f5 5.看到了flag----拿去提交发现是对的&#xff0c;这道题是逆向中最简单的一道了 flag{db2f62a36a018bce28e46d976e3f9864}

LeetCode501:二叉搜索树中的众数

给你一个含重复值的二叉搜索树&#xff08;BST&#xff09;的根节点 root &#xff0c;找出并返回 BST 中的所有 众数&#xff08;即&#xff0c;出现频率最高的元素&#xff09;。 如果树中有不止一个众数&#xff0c;可以按 任意顺序 返回。 假定 BST 满足如下定义&#xf…

STL —— priority_queue

博主首页&#xff1a; 有趣的中国人 专栏首页&#xff1a; C专栏 本篇文章主要讲解 priority_queue 的相关内容 目录 1. 优先级队列简介 基本操作 2. 模拟实现 2.1 入队操作 2.2 出队操作 2.3 访问队列顶部元素 2.4 判断优先队列是否为空 2.5 获取优先队列的大小 …

什么是One-Class SVM

1. 简介 单类支持向量机&#xff0c;简称One-Class SVM(One-Class Support Vector Machine)&#xff0c;用于异常检测和离群点检测(无监督学习&#xff0c;其他svm属于有监督的)&#xff0c;可以在没有大量异常样本的情况下有效地检测异常。其目标是通过仅使用正常数据来建模&a…

【力扣 Hot100 | 第四天】4.15(括号生成)

文章目录 4.括号生成4.1题目4.2解法&#xff1a;回溯4.2.1回溯思路&#xff08;1&#xff09;函数返回值以及参数&#xff08;2&#xff09;终止条件&#xff08;3&#xff09;遍历过程 4.2.2代码 4.括号生成 4.1题目 数字 n 代表生成括号的对数&#xff0c;请你设计一个函数…

三斜求积术 To 海伦公式 ← 三角形面积

【知识点&#xff1a;三斜求积术】 所谓秦九韶的三斜求积术&#xff0c;即如果已知三角形的边长a&#xff0c;b&#xff0c;c&#xff0c;可求得该三角形的面积为&#xff1a; 而由三斜求积术可推得海伦公式。过程如下&#xff1a; 其中&#xff0c; 上面推导公式的 Latex 代码…

​​​​网络编程探索系列之——广播原理剖析

hello &#xff01;大家好呀&#xff01; 欢迎大家来到我的网络编程系列之广播原理剖析&#xff0c;在这篇文章中&#xff0c; 你将会学习到如何在网络编程中利用广播来与局域网内加入某个特定广播组的主机&#xff01; 希望这篇文章能对你有所帮助&#xff0c;大家要是觉得我写…

从零开始写 Docker(十一)---实现 mydocker exec 进入容器内部

本文为从零开始写 Docker 系列第十一篇&#xff0c;实现类似 docker exec 的功能&#xff0c;使得我们能够进入到指定容器内部。 完整代码见&#xff1a;https://github.com/lixd/mydocker 欢迎 Star 推荐阅读以下文章对 docker 基本实现有一个大致认识&#xff1a; 核心原理&…

「51媒体」如何有效进行媒体邀约,提升宣传传播效果?

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 进行有效的媒体邀约&#xff0c;提升宣传传播效果的关键在于策略性和专业性。以下是具体的做法&#xff1a; 明确目标&#xff1a;要确立清晰的品牌推广目标和策略&#xff0c;包括确定目…

软考-系统集成项目管理中级--范围管理(输入输出很重要!!!)

本章历年考题分值统计 本章重点常考知识点汇总清单(掌握部分可直接理解记忆) 12、标杆对照将实际或计划的做法(如流程和操作过程)与其他可比组织的做法进行比较&#xff0c;以便识别最佳实践&#xff0c;形成改进意见&#xff0c;并为绩效考核提供依据。标杆对照所采用的可比组…

【YOLOv8改进[损失函数]】使用结合InnerIoU和Focaler的各种损失函数助力YOLOv8更优秀

目录 一 回归损失函数&#xff08;Bounding Box Regression Loss&#xff09; 1 Inner-IoU 2 Focaler-IoU&#xff1a;更聚焦的IoU损失 二 改进YOLOv8的损失函数 1 总体修改 ① ultralytics/utils/metrics.py文件 ② ultralytics/utils/loss.py文件 ③ ultralytics/uti…

亚马逊云科技直冲云霄训练营活动开始啦(送考试半价券)

小李哥分享的是亚马逊科技官方免费直冲云霄训练营学习活动&#xff0c;通过该活动可以薅到以下的羊毛 1️⃣免费系统性技能培训&#xff0c;成为AWS技术大牛 2️⃣考试半价券&#xff0c;最高可省1086元人民币 3️⃣分享活动获得精美礼品 4️⃣亚马逊云科技年度全球技术大会门票…

什么是T型槽铸铁平板中内应力——河北北重厂家

T型槽铸铁平板中的内应力指的是平板内部受到的内部力&#xff0c;包括拉应力和剪应力。在T型槽铸铁平板使用过程中&#xff0c;由于自身重量、外力加载等原因&#xff0c;会产生内部应力。这些内应力是平板内部各部分之间的相互作用力&#xff0c;使得平板各部分受到不同的拉伸…

FreeSWITCH 1.10.10 简单图形化界面1 - docker/脚本/ISO镜像安装[YouCanSee]

FreeSWITCH 1.10.10 简单图形化界面1 - docker/脚本/ISO镜像安装 0. 界面预览00. 使用手册在这里1. Docker安装1.1 下载docker镜像1.2 启动docker镜像1.3 登录 2. 脚本安装2.1 下载2.2 安装2.3 登录2.4 卸载程序 3. 镜像安装3.1 下载镜像3.2 安装镜像3.3 登录 0. 界面预览 网站…