书生·浦语大模型开源体系(五)笔记

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互相学习和建立一个积极的社区。谢谢你的光临,让我们一起踏上这个知识之旅!
请添加图片描述

文章目录

  • 🍀LMDeploy模型对话(chat)
      • 下载模型
      • 使用Transformer库运行模型
      • 使用LMDeploy与模型对话
  • 🍀LMDeploy模型量化(lite)
      • 设置最大KV Cache缓存大小
      • 使用W4A16量化
  • 🍀LMDeploy服务(serve)
      • 启动API服务器
      • 命令行客户端连接API服务器
      • 网页客户端连接API服务器
  • 🍀Python代码集成
      • Python代码集成运行1.8B模型
      • 向TurboMind后端传递参数

🍀LMDeploy模型对话(chat)

下载模型

本次实战营已经在开发机的共享目录中准备好了常用的预训练模型,可以运行如下命令查看:

ls /root/share/new_models/Shanghai_AI_Laboratory/

InternStudio开发机上下载模型(推荐)
如果你是在InternStudio开发机上,可以按照如下步骤快速下载模型。

首先进入一个你想要存放模型的目录,本教程统一放置在Home目录。执行如下指令:

cd ~

然后执行如下指令由开发机的共享目录软链接或拷贝模型:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b /root/
# cp -r /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b /root/

执行完如上指令后,可以运行“ls”命令。可以看到,当前目录下已经多了一个internlm2-chat-1_8b文件夹,即下载好的预训练模型。

ls

使用Transformer库运行模型

ransformer库是Huggingface社区推出的用于运行HF模型的官方库。

在2.2中,我们已经下载好了InternLM2-Chat-1.8B的HF模型。下面我们先用Transformer来直接运行InternLM2-Chat-1.8B模型,后面对比一下LMDeploy的使用感受。

现在,让我们点击左上角的图标,打开VSCode。

在左边栏空白区域单击鼠标右键,点击Open in Intergrated Terminal。

等待片刻,打开终端。

在终端中输入如下指令,新建pipeline_transformer.py。

touch /root/pipeline_transformer.py

回车执行指令,可以看到侧边栏多出了pipeline_transformer.py文件,点击打开。后文中如果要创建其他新文件,也是采取类似的操作。

将以下内容复制粘贴进入pipeline_transformer.py。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLMtokenizer = AutoTokenizer.from_pretrained("/root/internlm2-chat-1_8b", trust_remote_code=True)# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and cause OOM Error.
model = AutoModelForCausalLM.from_pretrained("/root/internlm2-chat-1_8b", torch_dtype=torch.float16, trust_remote_code=True).cuda()
model = model.eval()inp = "hello"
print("[INPUT]", inp)
response, history = model.chat(tokenizer, inp, history=[])
print("[OUTPUT]", response)inp = "please provide three suggestions about time management"
print("[INPUT]", inp)
response, history = model.chat(tokenizer, inp, history=history)
print("[OUTPUT]", response)

在这里插入图片描述
按Ctrl+S键保存(Mac用户按Command+S)。

回到终端,激活conda环境。

conda activate lmdeploy

运行python代码:

python /root/pipeline_transformer.py

在这里插入图片描述

使用LMDeploy与模型对话

这一小节我们来介绍如何应用LMDeploy直接与模型进行对话。

首先激活创建好的conda环境:

conda activate lmdeploy

使用LMDeploy与模型进行对话的通用命令格式为:

lmdeploy chat [HF格式模型路径/TurboMind格式模型路径]

例如,您可以执行如下命令运行下载的1.8B模型:

lmdeploy chat /root/internlm2-chat-1_8b

在这里插入图片描述
下面我们就可以与InternLM2-Chat-1.8B大模型对话了。比如输入“请给我讲一个小故事吧”,然后按两下回车键。
在这里插入图片描述
速度是不是明显比原生Transformer快呢~当然,这种感受可能不太直观,感兴趣的佬可以查看拓展部分“6.3 定量比较LMDeploy与Transformer库的推理速度”。

输入“exit”并按两下回车,可以退出对话。

拓展内容:有关LMDeploy的chat功能的更多参数可通过-h命令查看。

lmdeploy chat -h

🍀LMDeploy模型量化(lite)

本部分内容主要介绍如何对模型进行量化。主要包括 KV8量化和W4A16量化。总的来说,量化是一种以参数或计算中间结果精度下降换空间节省(以及同时带来的性能提升)的策略。

正式介绍 LMDeploy 量化方案前,需要先介绍两个概念:

计算密集(compute-bound): 指推理过程中,绝大部分时间消耗在数值计算上;针对计算密集型场景,可以通过使用更快的硬件计算单元来提升计算速度。
访存密集(memory-bound): 指推理过程中,绝大部分时间消耗在数据读取上;针对访存密集型场景,一般通过减少访存次数、提高计算访存比或降低访存量来优化。
常见的 LLM 模型由于 Decoder Only 架构的特性,实际推理时大多数的时间都消耗在了逐 Token 生成阶段(Decoding 阶段),是典型的访存密集型场景。

那么,如何优化 LLM 模型推理中的访存密集问题呢? 我们可以使用KV8量化和W4A16量化。KV8量化是指将逐 Token(Decoding)生成过程中的上下文 K 和 V 中间结果进行 INT8 量化(计算时再反量化),以降低生成过程中的显存占用。W4A16 量化,将 FP16 的模型权重量化为 INT4,Kernel 计算时,访存量直接降为 FP16 模型的 1/4,大幅降低了访存成本。Weight Only 是指仅量化权重,数值计算依然采用 FP16(需要将 INT4 权重反量化)。

设置最大KV Cache缓存大小

KV Cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,KV Cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,KV Cache全部存储于显存,以加快访存速度。当显存空间不足时,也可以将KV Cache放在内存,通过缓存管理器控制将当前需要使用的数据放入显存。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、KV Cache占用的显存,以及中间运算结果占用的显存。LMDeploy的KV Cache管理器可以通过设置–cache-max-entry-count参数,控制KV缓存占用剩余显存的最大比例。默认的比例为0.8。

下面通过几个例子,来看一下调整–cache-max-entry-count参数的效果。首先保持不加该参数(默认0.8),运行1.8B模型。

lmdeploy chat /root/internlm2-chat-1_8b

与模型对话,查看右上角资源监视器中的显存占用情况。

在这里插入图片描述

此时显存占用为7856MB。下面,改变–cache-max-entry-count参数,设为0.5。

lmdeploy chat /root/internlm2-chat-1_8b --cache-max-entry-count 0.5

与模型对话,再次查看右上角资源监视器中的显存占用情况。
在这里插入图片描述

看到显存占用明显降低,变为6608M。

下面来一波“极限”,把–cache-max-entry-count参数设置为0.01,约等于禁止KV Cache占用显存。

lmdeploy chat /root/internlm2-chat-1_8b --cache-max-entry-count 0.01

然后与模型对话,可以看到,此时显存占用仅为4560MB,代价是会降低模型推理速度。
在这里插入图片描述

使用W4A16量化

LMDeploy使用AWQ算法,实现模型4bit权重量化。推理引擎TurboMind提供了非常高效的4bit推理cuda kernel,性能是FP16的2.4倍以上。它支持以下NVIDIA显卡:

图灵架构(sm75):20系列、T4
安培架构(sm80,sm86):30系列、A10、A16、A30、A100
Ada Lovelace架构(sm90):40 系列
运行前,首先安装一个依赖库。

pip install einops==0.7.0

仅需执行一条命令,就可以完成模型量化工作。

lmdeploy lite auto_awq \/root/internlm2-chat-1_8b \--calib-dataset 'ptb' \--calib-samples 128 \--calib-seqlen 1024 \--w-bits 4 \--w-group-size 128 \--work-dir /root/internlm2-chat-1_8b-4bit

运行时间较长,请耐心等待。量化工作结束后,新的HF模型被保存到internlm2-chat-1_8b-4bit目录。下面使用Chat功能运行W4A16量化后的模型。

lmdeploy chat /root/internlm2-chat-1_8b-4bit --model-format awq

为了更加明显体会到W4A16的作用,我们将KV Cache比例再次调为0.01,查看显存占用情况。

lmdeploy chat /root/internlm2-chat-1_8b-4bit --model-format awq --cache-max-entry-count 0.01

可以看到,显存占用变为2472MB,明显降低。
在这里插入图片描述
拓展内容:有关LMDeploy的lite功能的更多参数可通过-h命令查看。

lmdeploy lite -h

🍀LMDeploy服务(serve)

在第二章和第三章,我们都是在本地直接推理大模型,这种方式成为本地部署。在生产环境下,我们有时会将大模型封装为API接口服务,供客户端访问。

我们来看下面一张架构图:
在这里插入图片描述

我们把从架构上把整个服务流程分成下面几个模块。

模型推理/服务。主要提供模型本身的推理,一般来说可以和具体业务解耦,专注模型推理本身性能的优化。可以以模块、API等多种方式提供。
API Server。中间协议层,把后端推理/服务通过HTTP,gRPC或其他形式的接口,供前端调用。
Client。可以理解为前端,与用户交互的地方。通过通过网页端/命令行去调用API接口,获取模型推理/服务。
值得说明的是,以上的划分是一个相对完整的模型,但在实际中这并不是绝对的。比如可以把“模型推理”和“API Server”合并,有的甚至是三个流程打包在一起提供服务。

启动API服务器

通过以下命令启动API服务器,推理internlm2-chat-1_8b模型:

lmdeploy serve api_server \/root/internlm2-chat-1_8b \--model-format hf \--quant-policy 0 \--server-name 0.0.0.0 \--server-port 23333 \--tp 1

其中,model-format、quant-policy这些参数是与第三章中量化推理模型一致的;server-name和server-port表示API服务器的服务IP与服务端口;tp参数表示并行数量(GPU数量)。

通过运行以上指令,我们成功启动了API服务器,请勿关闭该窗口,后面我们要新建客户端连接该服务。

可以通过运行一下指令,查看更多参数及使用方法:

lmdeploy serve api_server -h

你也可以直接打开http://{host}:23333查

在这里插入图片描述

注意,这一步由于Server在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在你本地打开一个cmd窗口,输入命令如下:

ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的ssh端口号

命令行客户端连接API服务器

运行命令行客户端:

lmdeploy serve api_client http://localhost:23333

现在你使用的架构是这样的:

在这里插入图片描述

网页客户端连接API服务器

关闭刚刚的VSCode终端,但服务器端的终端不要关闭。

新建一个VSCode终端,激活conda环境。

conda activate lmdeploy

使用Gradio作为前端,启动网页客户端。

lmdeploy serve gradio http://localhost:23333 \--server-name 0.0.0.0 \--server-port 6006

在这里插入图片描述
现在你使用的架构是这样的:
在这里插入图片描述


🍀Python代码集成

Python代码集成运行1.8B模型

首先激活conda环境。

conda activate lmdeploy
新建Python源代码文件pipeline.py。

touch /root/pipeline.py
打开pipeline.py,填入以下内容。

from lmdeploy import pipeline

pipe = pipeline(‘/root/internlm2-chat-1_8b’)
response = pipe([‘Hi, pls intro yourself’, ‘上海是’])
print(response)

代码解读:
第1行,引入lmdeploy的pipeline模块
第3行,从目录“./internlm2-chat-1_8b”加载HF模型
第4行,运行pipeline,这里采用了批处理的方式,用一个列表包含两个输入,lmdeploy同时推理两个输入,产生两个输出结果,结果返回给response
第5行,输出response
保存后运行代码文件:

python /root/pipeline.py
在这里插入图片描述

向TurboMind后端传递参数

在第3章,我们通过向lmdeploy传递附加参数,实现模型的量化推理,及设置KV Cache最大占用比例。在Python代码中,可以通过创建TurbomindEngineConfig,向lmdeploy传递参数。

以设置KV Cache占用比例为例,新建python文件pipeline_kv.py。

touch /root/pipeline_kv.py

打开pipeline_kv.py,填入如下内容:

from lmdeploy import pipeline, TurbomindEngineConfig
# 调低 k/v cache内存占比调整为总显存的 20%
backend_config = TurbomindEngineConfig(cache_max_entry_count=0.2)pipe = pipeline('/root/internlm2-chat-1_8b',backend_config=backend_config)
response = pipe(['Hi, pls intro yourself', '上海是'])
print(response)

保存后运行python代码:

python /root/pipeline_kv.py
得到输出结果:

在这里插入图片描述

在这里插入图片描述

挑战与创造都是很痛苦的,但是很充实。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/819517.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

定时器、PWM定时器、UART串口通信

我要成为嵌入式高手之4月15日ARM第八天!! ———————————————————————————— 定时器 S3C2440A 有 5 个 16 位定时器。其中定时器 0、1、2 和 3 具有脉宽调制(PWM)功能。定时器 4 是一个无 输出引脚的内部…

部署项目的时候的一些错误

项目打jar包&#xff0c;找不到资源&#xff0c;连接不上数据库 项目打包后无法运行 直接在idea运行可以 解决方法&#xff1a;pom文件中增加&#xff08;配置文件如果是yml&#xff0c;写yml&#xff09; <resources><resource><directory>src/main/java&…

MySQL—MySQL架构

MySQL—MySQL架构 MySQL逻辑架构图如下&#xff1a; Connectors连接器:负责跟客户端建立连接&#xff1b;Management Serveices & Utilities系统管理和控制工具&#xff1b;Connection Pool连接池:管理用户连接&#xff0c;监听并接收连接的请求&#xff0c;转发所有连接的…

使用Scrapy选择器提取豆瓣电影信息,并用正则表达式从介绍详情中获取指定信息

本文同步更新于博主个人博客&#xff1a;blog.buzzchat.top 一、Scrapy框架 1. 介绍 在当今数字化的时代&#xff0c;数据是一种宝贵的资源&#xff0c;而网络爬虫&#xff08;Web Scraping&#xff09;则是获取网络数据的重要工具之一。而在 Python 生态系统中&#xff0c;S…

hadoop编程之部门工资求和

数据集展示 7369SMITHCLERK79021980/12/17800207499ALLENSALESMAN76981981/2/201600300307521WARDSALESMAN76981981/2/221250500307566JONESMANAGER78391981/4/22975207654MARTINSALESMAN76981981/9/2812501400307698BLAKEMANAGER78391981/5/12850307782CLARKMANAGER78391981/…

Rust语言入门第五篇-数据类型

文章目录 数据类型1.标量类型1. 整数类型2.浮点数类型f32 和 f64示例代码注意事项 3.布尔类型4.字符类型 2.复合类型整数类型技术细节1. 检查溢出&#xff08;Checking Overflow&#xff09;2. 溢出时 panic&#xff08;Panic on Overflow&#xff09;3. 使用 Wrapping 模式&am…

hadoop编程之工资序列化排序

数据集展示 7369SMITHCLERK79021980/12/17800207499ALLENSALESMAN76981981/2/201600300307521WARDSALESMAN76981981/2/221250500307566JONESMANAGER78391981/4/22975207654MARTINSALESMAN76981981/9/2812501400307698BLAKEMANAGER78391981/5/12850307782CLARKMANAGER78391981/…

【C语言基础】:预处理详解(二)

文章目录 一、宏和函数的对比二、#和##运算符2.1 #运算符2.2 ##运算符 三、#undef四、命令行定义五、条件编译六、头文件的包含1. 头文件包含的方式2. 嵌套文件包含 上期回顾&#xff1a; 【C语言基础】&#xff1a;预处理详解(一) 一、宏和函数的对比 宏通常被应有于执行简单…

Web前端-JavaScript

黑马程序员JavaWeb开发教程 文章目录 一、js引入方式1、内部脚本2、外部脚本 二、js基础语法1、书写语法&#xff08;1&#xff09;基本语法&#xff08;2&#xff09;输出语句 2、变量&#xff08;1&#xff09;变量&#xff08;2&#xff09;注意事项 3、数据类型、运算符、流…

腾讯云服务器CVM标准型S8实例CPU内存、网络和存储性能测评

腾讯云第八代云服务器标准型S8实例基于全新优化虚拟化平台&#xff0c;CPU采用Intel Emerald Rapids 全新处理器&#xff0c;睿频3.0GHz&#xff0c;内存采用最新DDR5&#xff0c;默认网络优化&#xff0c;最高内网收发能力达4500万pps&#xff0c;最高内网带宽可支持120Gbps。…

java编译过程

java编译器将 java 源文件转换成 class 文件的过程。 &#xff08;1&#xff09;词法分析器 作用&#xff1a;将Java源文件的字符流转变成对应的Token流 每个词法单元&#xff08;token&#xff09;都有一个类型&#xff08;token type&#xff09;和一个值&#xff08;toke…

Ollama教程——使用langchain:ollama与langchain的强强联合

Ollama教程——使用langchain&#xff1a;ollama与langchain的强强联合 简介背景知识ollama简介langchain简介结合使用的重要性 环境搭建安装LangChain安装ollama环境设置 加载文档使用WebBaseLoader加载《奥德赛》 文档处理分割文档 向模型提问构建查询使用文档内容进行查询创…

小米SU7的防晒秘籍

在春日渐暖的日子里&#xff0c;夏天悄然而至。大家有没有从衣柜深处翻出夏衣和防晒装备&#xff0c;来迎接夏日阳光的“偏爱”呢&#xff1f; 深知防晒烦恼的小米&#xff0c;在小米SU7的设计中也充分考虑了汽车防晒这一痛点&#xff0c;采用前风挡三层镀银、天幕双层镀银、四…

漂亮,功能就差?错!优秀B端一定是颜值、体验、功能三位一体。

每次发一些漂亮的B端页面&#xff0c;都会有些人跳出来怼&#xff0c;他们都有一个固定的思维模式&#xff1a;漂亮的B端&#xff0c;一定功能差。这就好比马路上看到开豪车的美女&#xff0c;就觉得钱来路不正。 先给大家看一些过气的B端界面&#xff0c;是不是有似曾相识的感…

Java 集合【补充复习】

Java 集合【补充复习】 Java 集合概述Collection 接口继承树Map 接口继承树 Collection 接口方法使用 iterator 接口遍历集合元素使用 forearch 遍历集合元素 List 接口List 实现类之一&#xff1a;ArrayListList 实现类之二&#xff1a;LinkedList Set 接口Set 实现类之一&…

【Alphalens】使用Alphalens配合Akshare进行双均线因子分析,附源码及常见问题

Alphalens 是非常著名的一个python因子分析库。但是该库由于目前已经不怎么维护&#xff0c;问题非常多。最新的使用建议使用alphalens-reloaded&#xff0c;地址&#xff1a;stefan-jansen/alphalens-reloaded: Performance analysis of predictive (alpha) stock factors (gi…

【数据结构|C语言版】顺序表应用

前言1. 基于动态顺序表实现通讯录1.1 通讯录功能1.2 代码实现1.2.1 SeqList.h1.2.2 SeqList.c1.2.3 Contact.h1.2.4 Contact.c1.2.5 test.c 1.3 控制台测试1.3.1 添加联系人1.3.2 删除联系人1.3.3 修改联系人1.3.4 查找联系人1.3.5 清空通讯录1.3.6 通讯录读档和存档 2. 好题测…

Java SPI机制详解

Java SPI机制详解 1、什么是SPI&#xff1f; SPI 全称为 (Service Provider Interface) &#xff0c;是JDK内置的一种服务提供发现机制。SPI是一种动态替换发现的机制&#xff0c; 比如有个接口&#xff0c;想运行时动态的给它添加实现&#xff0c;你只需要添加一个实现。我们…

B端:导航条长得不都一样吗?错了,这里看过来就懂了。

B端导航条看似都一样&#xff0c;大差不差&#xff0c;仔细看一下&#xff0c;其实各有各的不同&#xff0c;这里方向了十多个&#xff0c;大家仔细看细节。

avicat连接异常,错误编号2059-authentication plugin…

错误原因为密码方式不对&#xff0c;具体可自行百度 首先管理员执行cmd进入 mysql安装目录 bin下边 我的是C:\Program Files\MySQL\MySQL Server 8.2\bin> 执行 mysql -u -root -p 然后输入密码 123456 进入mysql数据库 use mysql 执行 ALTER USER rootlocalhost IDE…