代码随想录的链表题在这里:
链表1、链表2做过总结
目录
HOT 100:链表
LeetCode160:相交链表
LeetCode206:反转链表
LeetCode206:回文链表
LeetCode141:环形链表
LeetCode142:环形链表ii
LeetCode21:合并两个有序列表
LeetCode2:两数相加
LeetCode2:两数相加
LeetCode24:两两交换链表中的节点
LeetCode25:K个一组反转链表
LeetCode138:随机链表的复制
LeetCode148:排序链表
LeetCode23:合并K个升序链表
LeetCode146:LRU(最近最少使用)缓存
HOT 100:链表
LeetCode160:相交链表
思路:先计算两个链表的长度,让两个指针cur1,cur2指向对齐的位置,然后再遍历比较直到cur1==cur2,返回cur1。秒了。
public class Solution {public ListNode getIntersectionNode(ListNode headA, ListNode headB) {int num1 = 0,num2 = 0;ListNode cur1 = headA;ListNode cur2 = headB;while(cur1 != null){cur1 = cur1.next;num1++;}while(cur2 != null){cur2 = cur2.next;num2++;}cur1 = headA;cur2 = headB;if(num1>num2){for(int i=0;i<Math.abs(num1-num2);i++){cur1 = cur1.next;}}else{for(int i=0;i<Math.abs(num1-num2);i++){cur2 = cur2.next;}}while(cur1 != null){if(cur1 == cur2){return cur1;}else{cur1 = cur1.next;cur2 = cur2.next;}}return cur1;}
}
LeetCode206:反转链表
思路:第一步肯定是看cur是否为空;接着利用pre和cur双指针来反转链表;其中用到一个临时指针tmp来记录cur的下一个节点。
class Solution {public ListNode reverseList(ListNode head) {ListNode pre = null;ListNode cur = head;if(cur == null){return pre;}while(cur!=null){ListNode tmp = cur.next;cur.next = pre;pre = cur;cur = tmp;}return pre;}
}
LeetCode206:回文链表
思路:用栈来写比较巧妙,前半部分入栈,比较出栈和下半部分即可;
注意要区分奇数和偶数,奇数个时,要跳过中间的数再比较
class Solution {public boolean isPalindrome(ListNode head) {int len = 0;ListNode cur = head;Stack<ListNode> stack = new Stack<>();while(cur != null){cur = cur.next;len++;}cur = head;for(int i=0;i<len/2;i++){stack.push(cur);cur = cur.next;}if(len%2 != 0) cur = cur.next;for(int i=0;i<len/2;i++){if(cur.val != stack.pop().val){return false;}cur = cur.next;}return true;}
}
LeetCode141:环形链表
思路:判断是否有环:快慢指针法,快指针走两步,慢指针走一步,判断是否会相遇;
public class Solution {public boolean hasCycle(ListNode head) {ListNode fast = head;ListNode slow = head;while(fast.next!=null && fast!=null){fast = fast.next.next;slow = slow.next;if(fast == slow){return true;}}return false; }
}
LeetCode142:环形链表ii
思路:分两步,秒了
(1)判断是否有环:快慢指针法,快指针走两步,慢指针走一步,判断是否会相遇;
(2)如果有环,从哪里开始入环。根据一些数学运算可知,当n=1时,x=z,即从头结点和相遇节点出发,以同样每次走一个节点的速度,二者将在环形出口节点相遇。
public class Solution {public ListNode detectCycle(ListNode head) {ListNode fast = head;ListNode slow = head;while(fast != null && fast.next != null){fast = fast.next.next;slow = slow.next;if(fast == slow){ListNode index1 = head;ListNode index2 = slow;while(index1 != index2){index1 = index1.next;index2 = index2.next;}return index1;}}return null; }
}
LeetCode21:合并两个有序列表
用到虚拟头结点、pre和cur1、cur2对比,分为三种情况
(1)cur1、cur2都不为null时,选择较小的一个作为下一个节点
(2)cur1为null,把pre的下一个节点设为cur2;反之也是一样
class Solution {public ListNode mergeTwoLists(ListNode list1, ListNode list2) {//为了不单独考虑头结点的情况,创建虚拟头结点ListNode dummy = new ListNode(-1);ListNode pre = dummy;ListNode cur1 = list1;ListNode cur2 = list2;while(cur1 != null && cur2 != null){if(cur1.val>cur2.val){pre.next = cur2;pre = cur2;cur2 = cur2.next;}else{pre.next = cur1;pre = cur1;cur1 = cur1.next;} }if(cur1 == null){pre.next = cur2;}if(cur2 == null){pre.next = cur1;}return dummy.next;}
}
LeetCode2:两数相加
思路:自己写的,不一定最优
class Solution {public ListNode addTwoNumbers(ListNode l1, ListNode l2) {ListNode cur1 = l1;ListNode cur2 = l2;int num1 = 0, num2 = 0;int sum1 = 0, sum2 = 0;while(cur1 != null){sum1 += cur1.val*Math.pow(10, num1);cur1 = cur1.next;num1++;}while(cur2 != null){sum2 += cur2.val*Math.pow(10, num2);cur2 = cur2.next;num2++;}int sum = sum1 + sum2;ListNode dummy = new ListNode(-1);ListNode pre = dummy;if(sum==0) return new ListNode(0);while(sum != 0){int n = sum % 10;sum = sum/10;ListNode tmp = new ListNode(n);pre.next = tmp;pre = tmp;}return dummy.next;}
}
LeetCode2:两数相加
思路:删除倒数第n个节点,利用快慢指针的差值;要删除倒数第n个节点,就要让指针指向它的前一个节点(倒数第n+1个节点)。秒。
class Solution {public ListNode removeNthFromEnd(ListNode head, int n) {ListNode dummy = new ListNode(-1,head);ListNode slow = dummy;ListNode fast = dummy;for(int i=0;i<=n;i++){fast = fast.next;}while(fast != null){fast = fast.next;slow = slow.next;}//当fast指向null时,slow指向倒数第n+1个节点slow.next = slow.next.next;return dummy.next;}
}
LeetCode24:两两交换链表中的节点
思路:还是pre当dummy,设cur1,cur2两两交换,记得设置临时指针tmp用于记录第三个节点
class Solution {public ListNode swapPairs(ListNode head) {ListNode dummy = new ListNode(-1,head);ListNode pre = dummy;ListNode cur1;ListNode cur2;ListNode tmp;while(pre.next!= null && pre.next.next != null){cur1 = pre.next;cur2 = pre.next.next;tmp = pre.next.next.next;pre.next = cur2;cur2.next = cur1;cur1.next = tmp;pre = cur1;}return dummy.next;}
}
LeetCode25:K个一组反转链表
思路:两个递归
class Solution {public ListNode reverseKGroup(ListNode head, int k) {if(head == null || head.next == null) return head;ListNode tail = head;for(int i=0;i<k;i++){if(tail == null){//不翻转直接返回return head;}tail = tail.next; //这里可以看出是左闭右开区间}ListNode newHead = reverse(head,tail);head.next = reverseKGroup(tail,k);return newHead;}public ListNode reverse(ListNode head, ListNode tail){ListNode pre = null;ListNode cur = head;while(cur != tail){ListNode tmp = cur.next;cur.next = pre;pre = cur;cur = tmp;}return pre;}
}
LeetCode138:随机链表的复制
思路:三个步骤:复制-random-拆分
class Solution {public Node copyRandomList(Node head) {if(head==null){return null;}Node cur1=head;//复制, 相当于1->2->3 ==> 1->1'->2->2'->3->3'while(cur1!=null){Node temp1=new Node(cur1.val);temp1.next=cur1.next;cur1.next=temp1;cur1=temp1.next;}//随机指向Node cur2=head;while(cur2!=null){Node temp2=cur2.next; //tmp2即复制节点if(cur2.random!=null){temp2.random=cur2.random.next; //random节点的next就是复制random}cur2=temp2.next;}//拆分原链表和拷贝链表Node cur3=head;Node result=head.next;while(cur3.next!=null){Node temp3=cur3.next;cur3.next=temp3.next;cur3=temp3;}return result;}
}
LeetCode148:排序链表
链表排序和数组排序最天然的不同在于访问元素与交换元素的成本,类似冒泡等排序方法就基本用不起来了,因为访问和交换的开销太大。链表排序方法主要有以下三种:
● 归并排序:链表最佳排序方法,注意要先递归链表的右半部,对链表进行截断,再递归链表的左半部。
● 快速排序:元素无法直接进行交换,可以每次遍历将链表分为大小两个部分分别存储到两个子链表中(实际上只需要构建一个新链表),再进行合并。
● 堆排序:简单粗暴,当空间复杂度不符合要求。
思路:
1. 先用fast和slow双指针法找到链表的中点(奇数链表为中点,偶数链表为中点的左面一个)
2. 然后从中点处递归断链,直到终止条件:一个节点指向nul
3. 合并(先while比较,再接剩下的多余的链)
class Solution {public ListNode sortList(ListNode head) {if(head == null || head.next == null) return head;ListNode slow = head;ListNode fast = head;//快慢指针找中点,奇数找中点,偶数找中点左边的一个while(fast.next != null && fast.next.next != null){fast = fast.next.next;slow = slow.next;}//slow.next就是第二段的头结点ListNode l1 = sortList(slow.next);slow.next = null;ListNode l2 = sortList(head);//接着合并连接新链表ListNode newHead = new ListNode(-1);ListNode cur = newHead;while(l1 != null && l2 != null){if(l1.val<l2.val){cur.next = l1;l1 = l1.next;}else{cur.next = l2;l2 = l2.next;}cur = cur.next;}cur.next = l1 == null? l2:l1;return newHead.next;}
}
LeetCode23:合并K个升序链表
思路:利用PriorityQueue构建小根堆,把节点加进去会自动升序排列好
类似的题目还有:347. 前K个高频元素,解析见链表02
相比于只加入头结点之后再比较,总感觉全部加入更加快速些。
class Solution {public ListNode mergeKLists(ListNode[] lists) {if(null == lists || lists.length == 0){return null;}ListNode newHead = new ListNode(-1);ListNode cur = newHead;//构建小根堆,PriorityQueue<ListNode> pq = new PriorityQueue<>((o1,o2)->(o1.val - o2.val));//先把节点全部加入到小根堆中for(ListNode head : lists){while(head!= null){pq.add(head);head = head.next;}}while(!pq.isEmpty()){ListNode tmp = pq.poll();//弹出的第一个 就是最小的头节点。cur.next = tmp;//指针不断移动。cur = cur.next;}return newHead.next;}
}
LeetCode146:LRU(最近最少使用)缓存
思路:双向链表(每个节点包括key,value和前后指针prev和next)+哈希map(key-node)
首先对于LRUCache类,
要先定义双向链表的节点,以及以capacity初始化LRU缓存
Map<Integer,ListNode>
get函数:如果存在则从map里获得node.value,把node移到链表最前方(刚刚使用过)
put函数:如果存在则node.val = value,然后移动node到最前方
不存在则新建node加入map,移动node到最前方,size++;
(当size>capacity,再size--,删去链表末段的节点,并从map移除节点)
public class LRUCache {//定义双向链表,靠近头的是最近使用的,靠近尾的是最久未使用的。//定义HashMap,存储链表节点信息class LinkNode {int key;int value;LinkNode prev;LinkNode next;public LinkNode() {}public LinkNode(int key, int value) {this.key = key;this.value = value;}}private Map<Integer, LinkNode> map = new HashMap<>();private int size;private int capacity;private LinkNode head, tail;public LRUCache(int capacity) {this.capacity = capacity;this.size = 0;head = new LinkNode();tail = new LinkNode();head.next = tail;tail.prev = head;}public int get(int key) {LinkNode node = map.get(key);if (node == null) {return -1; //不存在返回-1}//存在需移动位置至链表头部moveNodeToHead(node);return node.value;}public void put(int key, int value) {LinkNode node = map.get(key);if (node != null) {node.value = value;//node移动位置至链表头部moveNodeToHead(node);} else {LinkNode n = new LinkNode(key, value);map.put(key, n);//新node添加至链表头部addHead(n);size++;if (size > capacity) {//逐出最久未使用的nodermTailNode();size--;}}}private void moveNodeToHead(LinkNode node) {removeNode(node); //删除节点addHead(node); //添加至头节点}private void rmTailNode() {map.remove(tail.prev.key);removeNode(tail.prev);}private void removeNode(LinkNode node) {node.prev.next = node.next;node.next.prev = node.prev;}private void addHead(LinkNode node) {head.next.prev = node;node.prev = head;node.next = head.next;head.next = node;}}