【基础物理实验】【AFM虚拟实验】基于AFM的物质表面微观结构及力学性质表征仿真实验(上)【北京航空航天大学】

基于AFM的物质表面微观结构及力学性质表征仿真实验

说明: 本次实验为本科生《基础物理实验》课程中的虚拟实验部分,在虚拟实验平台中进行。

一、实验目的:

1. 掌握AFM的基本成像原理及系统结构;

2. 掌握AFM的基本操作技巧及操作步骤;

3. 掌握AFM在样品纳米形貌获取及性质区分中的应用;

4. 掌握AFM在定量分析中的应用,加深对原子间相互作用力的理解,了解探针-样品接触力模型。

二、实验原理:

1. AFM成像原理

AFM利用微悬臂探针来感应样品表面形貌信息。微悬臂探针是一端带有尖端曲率半径非常小的针尖的微悬臂,其不带针尖的一端固定,带针尖的一端接近样品表面并与其发生相互作用。样品表面形貌的变化导致探针-样品间距离的变化,从而引起探针-样品相互作用力的变化。受力的变化将导致微悬臂运动状态的改变,如微悬梁的形变量、共振频率、振幅等的变化。通过调整探针高度保持微悬臂运动状态的恒定,探针的高度对应着样品表面对应点的高度。探针在样品表面局部区域进行二维光栅式逐点扫描,记录各点的探针高度信息,进而获取样品该区域的形貌信息

AFM主要有三种工作模式,接触模式(Contact Mode)非接触模式(Non-contact Mode)轻敲模式(Tapping Mode)。接触模式中,探针与样品表面始终保持接触,探针-样品相互作用力导致微悬臂弯曲,通过检测悬臂的弯曲量可获取样品的表面形貌。非接触模式又称为频率调制模式(Frequency Modulation),该模式下微悬臂振动在实时共振频率处,针尖在样品表面上方斥力区,始终不与样品表面接触,通过记录微悬臂共振频率的变化实现对样品形貌的跟踪;轻敲模式又称为幅度调制模式(Amplitude modulation),该模式下微悬臂在共振频率附近振动,针尖轻轻的敲击表面,间断地和样品接触,通过记录微悬臂振幅的变化获取样品表面形貌。轻敲模式AFM有效地减小了探针-样品间相互作用力,避免了横向摩擦力,因而成为如今使用最广泛的AFM工作模式。

幅度调制AFM系统结构主要由以下四部分构成:力传感器(探针及其激励、形变检测)、反馈信号检测电路(信号放大及解调)、反馈控制器以及三维扫描器。微悬臂探针在外加信号激励下振动在共振频率处,当探针远离样品时,微悬臂自由振荡;当针尖接近样品时,探针-样品之间的相互作用力使得微悬臂的振幅减小;调整探针高度保持微悬臂振幅恒定,记录探针高度实现对样品表面形貌信息的表征。

2. 相位图像

幅度调制成像模式下,探针-样品相互作用力引起微悬臂运动状态的改变。其中,不同样品引起的微悬臂振动信号相位信息的变化是不同的,记录探针运动信号相对于驱动信号的相位差,可以获得样品的相位图像,从而揭示样品表面的性质信息。相位图像能够反映纳米尺度分辨率的非均质材料表面的成分,这是形貌像无法反映的。

相位的改变与探针-样品间非保守的相互作用力有关。非保守力导致能量损耗,需要探针在每个周期内补偿损失的能量来保证微悬臂振荡过程的稳定。该过程可用谐振子模型描述。相位延迟的正弦值与设定值及探针-样品表面非保守相互作用引起的能量耗散有关。幅度调制AFM在工作过程中保持振幅恒定,因此式(6)中前一个乘数保持不变,因而相位变化反映了探针-悬梁系统机械能转移到样品表面。

3. 力-距离曲线

力-距离曲线是描述探针-样品之间的相互作用力与二者距离关系的曲线。通过对力-距离曲线进行分析,可以得到样品的杨氏模量等力学参数。

探针-样品相互作用力可用球-平面的几何模型来描述,对于样品表面黏附力较小的硬接触,相互作用力通常采用DMT模型进行描述。z为探针实时位移,zc为探针平衡位置与样品之间的距离(即探针平衡位置与样品表面的距离)。H为Hamaker常数,R为针尖尖端半径,a0为分子间距,Eeff为系统等效杨氏模量,vt为针尖的泊松常数,vs为样品的泊松常数,Et为探针针尖的杨氏模量,Es为样品的杨氏模量。若其他参数已知,由式(7)便可计算得到样品的杨氏模量。
(7) 在这里插入图片描述

力-距离曲线中线性区域的斜率与系统的弹性模量有关:当样品表面相比悬梁非常柔软时,力-距离曲线的斜率反映了悬梁的弹性常数;相反,若悬梁与样品相比十分柔软时,则力-距离曲线的斜率可以反映样品的弹性性能。

三、实验仪器:

本次实验中使用的仪器有:AFM探头控制器直流稳压电源示波器信号发生器幅度解调模块AFM控制器软件操作模块探针及样品

(1)AFM探头
该模块由三维扫描器、步进电机、探针及相应的电子学设备组成,与信号发生器、幅度解调模块、示波器及控制器相连。探头机箱中共有4个外接接口:扫描器接口与控制器DA输出接口相连,用于提供三维扫描器扫描信号;激励信号接口与信号发生器输出接口相连,用于激励石英音叉探针共振;两个输出接口一个与幅度解调模块的输入接口相连,获取探针实时振动幅度值,将其用于探针位置控制。另一个接口与示波器相连接,用于观察探针振动信号。

鼠标左键点击探头机箱盖可打开探头机箱,选择合适的探针及样品放置探头中用于成像;F3键可用于探头机箱外壳透视效果的切换,便于观察探头的整体结构;用鼠标左键点击探头各个接口,可实现探头接口与其他模块的互相连接。

(2)控制器
控制器机箱包含采样激励接口D/A输出接口直流稳压电源接口上位机接口,在各接口处点击鼠标左键可实现控制器与相应功能模块的互联,控制器核心为PC-104主板,采用12位多通道AD/DAμC/OS操作系统用于AFM的实时调节控制。该模块用于三维扫描器控制、探针振幅信号的采集并进行PID计算、与上位机双向通信。

(3)直流稳压电源
直流稳压电源包含8个电源输出口:±160V接地±18V接地+5V接地及一个电源开关。其中±160V用于给三维扫描器供电,实现三维扫描;±18V用于步进电机驱动芯片及探头前置放大器供电;+5V用于控制器机箱PC-104主板供电。鼠标左键点击开关,直流电源开始向外供电。

(4)示波器
示波器用于观察探针实时振动信号,包含开关、信号输入端口、波形调节旋钮及scale旋钮。鼠标左键点击开关,可实现示波器的开启、关闭;鼠标左键点击示波器输入,可实现探头与示波器对应接口的互连;将鼠标放在波形调节旋钮中,点击左右键可实现波形的放大、缩小;将鼠标放在波形调节旋钮中,点击左右键可改变显示波形数。

(5)信号发生器
信号发生器用于激励探针振动,包含开关、输出接口、扫描选择旋钮、输出按钮以及波形调节旋钮。鼠标左键点击电源开关,可实现信号发生器的开关;信号发生器输出信号的调节通过旋钮调节;鼠标左键点击信号发生器中的扫描选择旋钮,可实现自动扫频与手动扫描的切换,其中自动扫频通过上位机实现,手动扫频通过手动调节旋钮实现;鼠标左键点击output按钮,该键变绿表示信号发生器有信号输出。通过鼠标左键可实现信号发生器输出接口与探头的连接。

(6)幅度解调模块
幅度解调模块用于从探针的正弦振动信号中获取探针实时振动幅度值,包含电源开关、输入及输出端口。鼠标左键点击Power按钮,可实现该模块的开关操作;输入端口与探头输出相连,输出与控制器相连接。

(7)AFM控制器软件操作模块
控制软件包含步进电机控制三维扫描器控制自动扫频PID控制器参数设置相位成像力曲线测量图像重建及实验数据的文件存取等功能,AFM实验操作的绝大部分操作通过控制软件实现。

(8)探针及样品
本次虚拟AFM实验采用双臂自由振动的石英音叉探针作为原子力检测传感器;采用的样品有:芯片CD标准光栅PSPB样品以及自定义样品。探针及样品均安置于虚拟柜中,鼠标左键点击相应样品及探针可以实现样品及样品的取放,鼠标右键点击样品及探针可浏览该样品(探针)简介。

四、实验内容(主要步骤及过程描述):

1. 样品微观形貌的表征
1.1. 优化控制参数
根据实验原理搭建幅度调制AFM成像系统,调整PID控制参数获取样品形貌图像:分析PID参数的变化对成像效果的影响,并从中找出最优的控制参数,获得清晰的样品表面形貌图。
1.2. 获取样品表面形貌
对于不同的样品表面进行扫描成像,获得样品的表面形貌图

2. 样品表面性质的表征
2.1. 相位成像揭示样品性质
采用幅度调制模式跟踪如图1所示的样品并获取其形貌图像;
在幅度调制模式AFM中,通过检测探针的振动信号与驱动信号的相位差,获得样品表面的相位图像。
比较形貌像与相位像的区别,并对结果进行讨论。
2.2. 设定幅度值对相位成像的影响
改变幅度成像模式下AFM幅度设定值,获得不同的相位图像,分析设定值相位差之间的关系;

3. 样品表面力学参数的测量
测量样品表面杨氏模量
根据样品的相位图像,选择合适的位置;
获得探针-样品力曲线;
根据力曲线计算样品的杨氏模量;
分析探针、样品杨氏模量对成像带来的影响。

(未完待续)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/818636.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 Tranformer 进行概率时间序列预测实战

使用 Transformers 进行概率时间序列预测实战 通常,经典方法针对数据集中的每个时间序列单独拟合。然而,当处理大量时间序列时,在所有可用时间序列上训练一个“全局”模型是有益的,这使模型能够从许多不同的来源学习潜在的表示。…

HCIP的学习(9)

OSPF的接口网络类型 ​ OSPF的接口在某种网络类型下的工作方式。 网络类型OSPF接口的工作方式BMABroadcast;可以建立多个邻居关系。需要进行DR选举。hello 10S;dead 40S。P2PP2P;只能建立一个邻居关系,不需要进行DR选举。Hello …

操作系统:进程(二)

进程的状态 进程状态反映进程执行过程的变化。这些状态随着进程的执行和外界条件的变化而转换。在三态模型中,进程状态分为三个基本状态,即运行态,就绪态,阻塞态。 一个进程从创建而产生至撤销而消亡的整个生命期间,…

强化学习-Reinforcement learning | RL

目录 什么是强化学习? 强化学习的应用场景 强化学习的主流算法 强化学习是机器学习的一种学习方式,它跟监督学习、无监督学习是对应的。本文将详细介绍强化学习的基本概念、应用场景和主流的强化学习算法及分类。 什么是强化学习? 强化学习并不是某一种特定的算法,而是…

【好书推荐-第十五期】《 机器学习基础:从入门到求职》(博文视点出品)

😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公众号:洲与AI。 🎈 本文专栏:本文收录…

python 重载内置函数吗

python中是不支持函数重载的,但在python3中提供了这么一个装饰器functools.singledispatch,它叫做单分派泛函数,可以通过它来完成python中函数的重载,让同一个函数支持不同的函数类型,它提供的目的也正是为了解决函数重…

Problem #8 [Easy]

This problem was asked by Google. A unival tree (which stands for “universal value”) is a tree where all nodes under it have the same value. Given the root to a binary tree, count the number of unival subtrees. For example, the following tree has 5 un…

osg渲染过程

目录 1、渲染最简单代码 2、详解run方法 3、详细过程 4、回调函数 5、Node Visitor 1、渲染最简单代码 2、详解run方法 3、详细过程 3.1 advance()方法 进行帧计数 3.2 eventTraversal() eventTraversal()响应用户操作,eventTraversal()遍历的是事件队列,而…

小型时间继电器ST3PA-C DC24V 带插座PF085A 导轨安装 JOSEF约瑟

ST3P系列时间继电器 系列型号 ST3PF-2Z(JSZ3F-2Z) 5s AC110V ST3PF(JSZ3F) 10s AC48V ST3PC-1(AH3-3) 5s DC24V ST3PC-1(AH3-3) 2h AC220V ST3PC-F(JSZ3C-F) AC380V ST3PA-E(JSZ3A-E) DC24V ST3PA-F(JSZ3A-F) DC24V ST3PF(JSZ3F) 10s AC36V ST3PC-1(AH3-3) 10s AC24V ST3PC-1…

OpenHarmony开发实例:【分布式游戏鉴权应用】

1.介绍 本文将介绍分布式游戏鉴权应用。操作过程为: 设备A点击“开始游戏”按钮,开始搜索周边设备。 设备A显示周边设备,点击设备B并发起连接请求,远程拉起设备B的FA。 设备B收到请求后,选择是否允许“开启游戏”。…

git am XXX.patch 文件内容解析

git am XXX.patch 文件内容解析 打补丁的两种方式: 1.patch XXX.patch 2.git am XXX.patch 例如: diff --git a/drivers/crypto/se/ce.c b/drivers/crypto/se/ce.c index e6f68286d4ce6..de1bcb46fbe6b 100644 --- a/drivers/crypto/se/ce.cb/drive…

【生产案例面试题】JVM调优

写作目的 最近上线了一个需求,遇到了一个JVM报警的问题,很荣幸能遇到,在此分享一下整个调优的过程。 背景 我们是中台服务,我们的甲方就是上游不同的业务。中台原则上是业务和能力分离,但是不可避免的是分不开&…

【示例】MySQL-SQL语句优化

前言 本文主要讲述不同SQL语句的优化策略。 SQL | DML语句 insert语句 插入数据的时候,改为批量插入 插入数据的时候,按照主键顺序插入 大批量插入数据的时候(百万),用load指令,从本地文件载入&#x…

Web地图服务规范之栅格瓦片地图服务:WMTS(WebMapTileService,网络地图瓦片服务)、TMS(TileMapService,瓦片地图服务)和XYZ

一、什么是栅格瓦片地图服务 这四种地图服务都是通过网络传输的栅格瓦片地图服务,这里有三个名词需要解释: 1、什么是栅格? 遥感影像、Dem等,就是图片。 2、什么是地图服务? 实际上,地图服务就是一个u…

如何在jmeter中把响应中的数据提取出来并引用

jmeter做接口测试过程中,经常遇到请求需要用到token的时候,我们可以把返回token的接口用后置处理器提取出来,但是在这种情况下,只能适用于当前的线程组,其他线程组无法引用到提取的token变量值,所以必须要生…

windows ubuntu子系统,单细胞篇 1.cellranger安装与分析

这几天,我将单细胞测序在windows ubuntu子系统中跑了一遍,将过程分享給大家。 单细胞测序conda create -n 10xdb #创建环境 conda activate 10xdbconda install -c bioconda cellranger -y #失败,可能源中没有 wget -O cellranger-7.…

使用深度学习集成模型进行乳腺癌组织病理学图像分类

基于预训练的VGG16和VGG19架构训练了四种不同的模型(即完全训练的 VGG16、微调的 VGG16、完全训练的 VGG19 和微调的 VGG19 模型)。最初,我们对所有单独的模型进行了5倍交叉验证操作。然后,我们采用集成策略,取预测概率…

说说你对链表的理解?常见的操作有哪些?

一、是什么 链表(Linked List)是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的,由一系列结点(链表中每一个元素称为结点)组成 每个结点包括两个部分&…

如何编写易于访问的技术文档 - 最佳实践与示例

当你为项目或工具编写技术文档时,你会希望它易于访问。这意味着它将为全球网络上的多样化受众提供服务并可用。 网络无障碍旨在使任何人都能访问网络内容。设计师、开发人员和撰写人员有共同的无障碍最佳实践。本文将涵盖一些创建技术内容的最佳实践。 &#xff0…

JS-30-async函数

上一节说,JavaScript异步操作需要通过Promise实现,一个Promise对象在操作网络时是异步的,等到返回后再调用回调函数,执行正确就调用then(),执行错误就调用catch()。 虽然异步实现了,不会让用户感觉到页面“…