索引
- 定积分的性质
- 远算性质
- 定理4.1 定积分的线性性
- 定理4.2 定积分的乘积可积性
- 定理4.3 定积分的保序性
- 定理4.4 定积分的绝对可积性
- 定理4.5 定积分的区间可加性
- 积分中值定理
- 积分第一中值定理
定积分的性质
远算性质
定理4.1 定积分的线性性
若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,则函数 k 1 f ( x ) + k 2 g ( x ) k_{1}f\left ( x \right ) +k_{2}g\left ( x \right ) k1f(x)+k2g(x)也在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,且 ∫ a b k 1 f ( x ) + k 2 g ( x ) d x = k 1 ∫ a b f ( x ) d x + k 2 ∫ a b g ( x ) d x \int_{a}^{b}k_{1}f\left ( x \right ) +k_{2}g\left ( x \right ) dx=k_{1} \int_{a}^{b}f\left ( x \right )dx+ k_{2} \int_{a}^{b}g\left ( x \right )dx ∫abk1f(x)+k2g(x)dx=k1∫abf(x)dx+k2∫abg(x)dx。
定理4.2 定积分的乘积可积性
若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,则函数 f ( x ) ⋅ g ( x ) f\left ( x \right ) \cdot g\left ( x \right ) f(x)⋅g(x)也在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积。
定理4.3 定积分的保序性
若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积, f ( x ) ≥ g ( x ) f\left ( x \right )\ge g\left ( x \right ) f(x)≥g(x), ∫ b a f ( x ) d x ≥ ∫ b a g ( x ) d x \int_{b}^{a} f\left ( x \right )dx\ge \int_{b}^{a}g\left ( x \right ) dx ∫baf(x)dx≥∫bag(x)dx。
构造函数 h ( x ) = f ( x ) − g ( x ) ≥ 0 h\left ( x \right )=f\left ( x \right )-g\left ( x \right ) \ge 0 h(x)=f(x)−g(x)≥0。
根据定积分的线性性,函数 h ( x ) h\left ( x \right ) h(x)可积,且 ∫ a b h ( x ) d x = ∫ a b f ( x ) − g ( x ) d x = ∫ a b f ( x ) d x − ∫ a b g ( x ) d x \int_{a}^{b} h\left ( x \right ) dx=\int_{a}^{b} f\left ( x \right ) -g\left ( x \right )dx=\int_{a}^{b} f\left ( x \right )dx-\int_{a}^{b} g\left ( x \right )dx ∫abh(x)dx=∫abf(x)−g(x)dx=∫abf(x)dx−∫abg(x)dx,
∀ ε > 0 \forall \varepsilon >0 ∀ε>0, ∃ δ > 0 \exists \delta >0 ∃δ>0: ∀ P \forall P ∀P, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ∀ξi∈[xi−1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) ∀λ∈(0,δ), ∑ i = 1 n ( h ( ξ i ) Δ x i ) ≥ 0 \sum_{i=1}^{n} \left ( h\left ( \xi _{i} \right ) \Delta x_{i} \right )\ge 0 ∑i=1n(h(ξi)Δxi)≥0,
根据数列极限的保序性, ∫ a b h ( x ) d x = lim λ → 0 [ ∑ i = 1 n ( h ( ξ i ) Δ x i ) ] ≥ 0 \int_{a}^{b} h\left ( x \right ) dx=\lim _{\lambda \to 0} \left [ \sum_{i=1}^{n} \left ( h\left ( \xi _{i} \right ) \Delta x_{i} \right ) \right ] \ge 0 ∫abh(x)dx=limλ→0[∑i=1n(h(ξi)Δxi)]≥0,即 ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x \int_{a}^{b} f\left ( x \right )dx \ge \int_{a}^{b} g\left ( x \right )dx ∫abf(x)dx≥∫abg(x)dx。
定理4.4 定积分的绝对可积性
若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,则函数 ∣ f ( x ) ∣ \left | f\left ( x \right ) \right | ∣f(x)∣也在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,且 ∫ a b ∣ f ( x ) ∣ d x ≥ ∫ a b f ( x ) d x \int_{a}^{b} \left | f\left ( x \right ) \right |dx \ge \int_{a}^{b} f\left ( x \right )dx ∫ab∣f(x)∣dx≥∫abf(x)dx。
定理4.5 定积分的区间可加性
若函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积, c ∈ ( a , b ) c\in \left ( a,b \right ) c∈(a,b),则函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , c ] \left [ a,c \right ] [a,c], [ c , b ] \left [ c,b \right ] [c,b]上均可积,反之亦然,且 ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b} f\left ( x \right ) dx=\int_{a}^{c} f\left ( x \right ) dx + \int_{c}^{b} f\left ( x \right ) dx ∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx。
若函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,则可取一个划分P,设c为P的一个分点x_{k}(如不然,将c作为新分点添加入划分P,根据引理3.1, ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε \left | \sum_{i=1}^{n}\left ( \omega _{i} \Delta x_{i} \right ) \right | <\varepsilon ∣∑i=1n(ωiΔxi)∣<ε仍然成立),
在闭区间 [ a , c ] \left [ a,c \right ] [a,c]上存在划分 P 1 = { [ x i , x i − 1 ] ∣ 1 ≤ i ≤ k } P_{1} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid 1\le i\le k \right \} P1={[xi,xi−1]∣1≤i≤k}: ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε \left | \sum_{i=1}^{n}\left ( \omega _{i} \Delta x_{i} \right ) \right | <\varepsilon ∣∑i=1n(ωiΔxi)∣<ε,函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , c ] \left [ a,c \right ] [a,c]上可积,
在闭区间 [ c , b ] \left [ c,b \right ] [c,b]上存在划分 P 2 = { [ x i , x i − 1 ] ∣ k + 1 ≤ i ≤ n } P_{2} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid k+1\le i\le n \right \} P2={[xi,xi−1]∣k+1≤i≤n}: ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε \left | \sum_{i=1}^{n}\left ( \omega _{i} \Delta x_{i} \right ) \right | <\varepsilon ∣∑i=1n(ωiΔxi)∣<ε,函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ c , b ] \left [ c,b \right ] [c,b]上可积;
反之,若函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , c ] \left [ a,c \right ] [a,c], [ c , b ] \left [ c,b \right ] [c,b]上均可积,
设在闭区间 [ a , c ] \left [ a,c \right ] [a,c]上存在划分 P 1 = { [ x i , x i − 1 ] ∣ 1 ≤ i ≤ k } P_{1} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid 1\le i\le k \right \} P1={[xi,xi−1]∣1≤i≤k}: ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε 2 \left | \sum_{i=1}^{n}\left ( \omega_{i} \Delta x_{i} \right ) \right | <\frac{\varepsilon }{2} ∣∑i=1n(ωiΔxi)∣<2ε,在闭区间 [ c , b ] \left [ c,b \right ] [c,b]上存在划分 P 2 = { [ x i , x i − 1 ] ∣ k + 1 ≤ i ≤ n } P_{2} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid k+1\le i\le n \right \} P2={[xi,xi−1]∣k+1≤i≤n}: ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε 2 \left | \sum_{i=1}^{n}\left ( \omega _{i} \Delta x_{i} \right ) \right | <\frac{\varepsilon }{2} ∣∑i=1n(ωiΔxi)∣<2ε,
对于划分 P 1 P_{1} P1, P 2 P_{2} P2,其积划分 P = P 1 ⋅ P 2 P=P_{1}\cdot P_{2} P=P1⋅P2仍满足 lim λ → 0 [ ∑ i = 1 n f ( ( ω i Δ x i ) ) ] \lim_{\lambda \to 0} \left [ \sum_{i=1}^{n} f\left ( \left ( \omega _{i}\Delta x_{i} \right ) \right ) \right ] limλ→0[∑i=1nf((ωiΔxi))],函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积。
取一个包含分点c=x_{r}的划分P,设在闭区间 [ a , c ] \left [ a,c \right ] [a,c]上存在划分 P 1 = { [ x i , x i − 1 ] ∣ 1 ≤ i ≤ r } P_{1} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid 1\le i\le r \right \} P1={[xi,xi−1]∣1≤i≤r},在闭区间 [ c , b ] \left [ c,b \right ] [c,b]上存在划分 P 2 = { [ x i , x i − 1 ] ∣ r + 1 ≤ i ≤ n } P_{2} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid r+1\le i\le n \right \} P2={[xi,xi−1]∣r+1≤i≤n},
易知 ∑ i = 1 n ( f ( ω i ) Δ x i ) = ∑ i = 1 k ( f ( ξ i ) Δ x i ) + ∑ i = k + 1 n ( ω i Δ x i ) \sum_{i=1}^{n} \left ( f\left ( \omega _{i} \right )\Delta x_{i} \right ) =\sum_{i=1}^{k} \left ( f\left ( \xi _{i} \right )\Delta x_{i} \right ) +\sum_{i=k+1}^{n} \left ( \omega_{i} \Delta x_{i} \right ) ∑i=1n(f(ωi)Δxi)=∑i=1k(f(ξi)Δxi)+∑i=k+1n(ωiΔxi),对等式两边取 λ → 0 \lambda \to 0 λ→0时的极限,可得 lim λ → 0 [ ∑ i = 1 n ( ω i Δ x i ) ] = lim λ → 0 [ ∑ i = 1 k ( f ( ξ i ) Δ x i ) ] + lim λ → 0 [ ∑ i = k + 1 n ( f ( ξ i ) Δ x i ) ] \lim _{\lambda \to 0} \left [ \sum_{i=1}^{n} \left ( \omega_{i} \Delta x_{i} \right )\right ]=\lim _{\lambda \to 0} \left [ \sum_{i=1}^{k} \left ( f\left ( \xi _{i} \right )\Delta x_{i} \right )\right ] +\lim _{\lambda \to 0} \left [ \sum_{i=k+1}^{n} \left ( f\left ( \xi _{i} \right )\Delta x_{i} \right )\right ] limλ→0[∑i=1n(ωiΔxi)]=limλ→0[∑i=1k(f(ξi)Δxi)]+limλ→0[∑i=k+1n(f(ξi)Δxi)],即 ∫ a b ∣ f ( x ) ∣ d x ≥ ∫ a b f ( x ) d x \int_{a}^{b} \left | f\left ( x \right ) \right |dx \ge \int_{a}^{b} f\left ( x \right )dx ∫ab∣f(x)∣dx≥∫abf(x)dx。
积分中值定理
积分第一中值定理
若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,且 g ( x ) g\left ( x \right ) g(x)不变号,则 ∃ η ∈ [ m , M ] \exists \eta \in \left [ m,M \right ] ∃η∈[m,M]( m = inf f ( x ) m=\inf f\left ( x \right ) m=inff(x), M = max f ( x ) M=\max f\left ( x \right ) M=maxf(x)): ∫ a b f ( x ) g ( x ) d x = η ∫ a b g ( x ) d x \int_{a}^{b} f\left ( x \right ) g\left ( x \right )dx=\eta \int_{a}^{b} g\left ( x \right ) dx ∫abf(x)g(x)dx=η∫abg(x)dx。
若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的连续函数,则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ∃ξ∈(a,b): ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int_{a}^{b} f\left ( x \right )g\left ( x \right )dx =f\left ( \xi \right )\int_{a}^{b}g\left ( x \right )dx ∫abf(x)g(x)dx=f(ξ)∫abg(x)dx。
易知 m g ( x ) ≤ f ( x ) g ( x ) ≤ M g ( x ) m g\left ( x \right ) \le f\left ( x \right ) g\left ( x \right ) \le M g\left ( x \right ) mg(x)≤f(x)g(x)≤Mg(x),
根据定积分的保序性和线性性, m ∫ a b g ( x ) d x ≤ ∫ a b f ( x ) g ( x ) d x ≤ M ∫ a b g ( x ) d x m\int_{a}^{b} g\left ( x \right )dx \le \int_{a}^{b} f\left ( x \right ) g\left ( x \right )dx \le M\int_{a}^{b} g\left ( x \right )dx m∫abg(x)dx≤∫abf(x)g(x)dx≤M∫abg(x)dx,即 m ≤ η = ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x ≤ M m \le \eta =\frac{\int_{a}^{b} f\left ( x \right ) g\left ( x \right )dx}{\int_{a}^{b} g\left ( x \right )dx}\le M m≤η=∫abg(x)dx∫abf(x)g(x)dx≤M。
若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的连续函数,
引用介值定理, ∃ ξ : f ( ξ ) = η ∈ ( m , M ) \exists \xi:f\left ( \xi \right )=\eta \in \left ( m,M \right ) ∃ξ:f(ξ)=η∈(m,M)。