基于深度学习的花卉检测系统(含PyQt界面)

基于深度学习的花卉检测系统(含PyQt界面)

  • 前言
  • 一、数据集
    • 1.1 数据集介绍
    • 1.2 数据预处理
  • 二、模型搭建
  • 三、训练与测试
    • 3.1 模型训练
    • 3.2 模型测试
  • 四、PyQt界面实现
  • 参考资料

前言

本项目是基于swin_transformer深度学习网络模型的花卉检测系统,目前能够检测daisy、dandelion、roses、sunflowers、tulips五类花卉,可以自己添加花卉种类进行训练。本文将详述数据集处理、模型构建、训练代码、以及基于PyQt5的应用界面设计。在应用中可以对花卉的图片进行识别,输出花卉的类别和模型对其预测结果的置信度。本文附带了完整的应用界面设计、深度学习模型代码和训练数据集的下载链接。

完整资源下载链接:博主在面包多网站上的完整资源下载页

项目演示视频:

【项目分享】基于深度学习的花卉检测系统(含PyQt界面)

一、数据集

1.1 数据集介绍

本项目使用的数据集是由谷歌创建的一个用于机器学习和计算机视觉任务的图像数据集,称为花卉数据集(Flower Photos Dataset)。它包含了来自五种不同花卉类别的图像,每个类别大约有几百到一千张图像。这些花卉类别包括:雏菊(Daisy)、蒲公英(Dandelion)、玫瑰(Roses)、向日葵(Sunflowers)、郁金香(Tulips) 。

下载链接:http://download.tensorflow.org/example_images/flower_photos.tgz

下载后得到一个.tgr文件,解压后,文件夹下包含了5个子文件夹,每个子文件夹都存储了一种类别的花的图片,子文件夹的名称就是花的类别的名称,如下图:
在这里插入图片描述

1.2 数据预处理

使用MyDataSet类在 PyTorch 中加载图像数据并将其与相应的类别标签配对,完成自定义数据集的生成。它包含初始化方法__init__来接收图像文件路径列表和对应的类别标签列表,并提供了__getitem__方法来获取图像及其标签,同时还可以使用collate_fn将多个样本进行批处理。

class MyDataSet(Dataset):"""自定义数据集"""def __init__(self, images_path: list, images_class: list, transform=None):self.images_path = images_pathself.images_class = images_classself.transform = transformdef __len__(self):return len(self.images_path)def __getitem__(self, item):img = Image.open(self.images_path[item])# RGB为彩色图片,L为灰度图片if img.mode != 'RGB':raise ValueError("image: {} isn't RGB mode.".format(self.images_path[item]))label = self.images_class[item]if self.transform is not None:img = self.transform(img)return img, label@staticmethoddef collate_fn(batch):# 官方实现的default_collate可以参考# https://github.com/pytorch/pytorch/blob/67b7e751e6b5931a9f45274653f4f653a4e6cdf6/torch/utils/data/_utils/collate.pyimages, labels = tuple(zip(*batch))images = torch.stack(images, dim=0)labels = torch.as_tensor(labels)return images, labels

二、模型搭建

我们使用的是一种称为 Swin_Transformer 的新视觉 Transformer,它可以作为 CV 的通用主干。将 Transformer 从语言适应到视觉方面的挑战来自两个域之间的差异,例如视觉实体的规模以及相比于文本单词的高分辨率图像像素的巨大差异。为解决这些差异,我们提出了一种 层次化 (hierarchical) Transformer,其表示是用移位窗口 (Shifted Windows) 计算的。移位窗口方案通过将自注意力计算限制在不重叠的局部窗口的同时,还允许跨窗口连接来提高效率。这种分层架构具有在各种尺度上建模的灵活性,并且相对于图像大小具有线性计算复杂度。Swin Transformer 的这些特性使其与广泛的视觉任务兼容,包括图像分类(ImageNet-1K 的 87.3 top-1 Acc)和密集预测任务,例如目标检测(COCO test dev 的 58.7 box AP 和 51.1 mask AP)和语义分割(ADE20K val 的 53.5 mIoU)。它的性能在 COCO 上以 +2.7 box AP 和 +2.6 mask AP 以及在 ADE20K 上 +3.2 mIoU 的大幅度超越了SOTA 技术,证明了基于 Transformer 的模型作为视觉主干的潜力。分层设计和移位窗口方法也证明了其对全 MLP 架构是有益的。Swin_Transformer模型的整体架构,如下图所示:
在这里插入图片描述
而我们代码的模型具体实现主要包括如下几个模块:PatchEmbed 模块WindowAttention模块、SwinTransformerBlock模块 BasicLayer模块、SwinTransformer模块以及辅助函数drop_path_f等。

PatchEmbed 模块:将输入图像划分为不重叠的图像块,并将每个图像块转换为嵌入向量。

class PatchEmbed(nn.Module):"""2D Image to Patch Embedding"""def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()patch_size = (patch_size, patch_size)self.patch_size = patch_sizeself.in_chans = in_cself.embed_dim = embed_dimself.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):_, _, H, W = x.shape# padding# 如果输入图片的H,W不是patch_size的整数倍,需要进行paddingpad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)if pad_input:# to pad the last 3 dimensions,# (W_left, W_right, H_top,H_bottom, C_front, C_back)x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],0, self.patch_size[0] - H % self.patch_size[0],0, 0))# 下采样patch_size倍x = self.proj(x)_, _, H, W = x.shape# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = x.flatten(2).transpose(1, 2)x = self.norm(x)return x, H, W

WindowAttention 模块:基于窗口的多头自注意力机制,用于捕获图像块之间的全局关系。

class WindowAttention(nn.Module):r""" Window based multi-head self attention (W-MSA) module with relative position bias.It supports both of shifted and non-shifted window.Args:dim (int): Number of input channels.window_size (tuple[int]): The height and width of the window.num_heads (int): Number of attention heads.qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: Trueattn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0proj_drop (float, optional): Dropout ratio of output. Default: 0.0"""def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):super().__init__()self.dim = dimself.window_size = window_size  # [Mh, Mw]self.num_heads = num_headshead_dim = dim // num_headsself.scale = head_dim ** -0.5# define a parameter table of relative position biasself.relative_position_bias_table = nn.Parameter(torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]# get pair-wise relative position index for each token inside the windowcoords_h = torch.arange(self.window_size[0])coords_w = torch.arange(self.window_size[1])coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # [2, Mh, Mw]coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]# [2, Mh*Mw, 1] - [2, 1, Mh*Mw]relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0relative_coords[:, :, 1] += self.window_size[1] - 1relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]self.register_buffer("relative_position_index", relative_position_index)self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)self.softmax = nn.Softmax(dim=-1)def forward(self, x, mask: Optional[torch.Tensor] = None):"""Args:x: input features with shape of (num_windows*B, Mh*Mw, C)mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None"""# [batch_size*num_windows, Mh*Mw, total_embed_dim]B_, N, C = x.shape# qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]# reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]# permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)# [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)# transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]q = q * self.scaleattn = (q @ k.transpose(-2, -1))# relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]attn = attn + relative_position_bias.unsqueeze(0)if mask is not None:# mask: [nW, Mh*Mw, Mh*Mw]nW = mask.shape[0]  # num_windows# attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]# mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)attn = attn.view(-1, self.num_heads, N, N)attn = self.softmax(attn)else:attn = self.softmax(attn)attn = self.attn_drop(attn)# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]# transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]# reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]x = (attn @ v).transpose(1, 2).reshape(B_, N, C)x = self.proj(x)x = self.proj_drop(x)return x

SwinTransformerBlock 模块:Swin Transformer 的基本模块,包含了窗口注意力机制和MLP前馈网络。

class SwinTransformerBlock(nn.Module):r""" Swin Transformer Block.Args:dim (int): Number of input channels.num_heads (int): Number of attention heads.window_size (int): Window size.shift_size (int): Shift size for SW-MSA.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, dim, num_heads, window_size=7, shift_size=0,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratioassert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"self.norm1 = norm_layer(dim)self.attn = WindowAttention(dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)def forward(self, x, attn_mask):H, W = self.H, self.WB, L, C = x.shapeassert L == H * W, "input feature has wrong size"shortcut = xx = self.norm1(x)x = x.view(B, H, W, C)# pad feature maps to multiples of window size# 把feature map给pad到window size的整数倍pad_l = pad_t = 0pad_r = (self.window_size - W % self.window_size) % self.window_sizepad_b = (self.window_size - H % self.window_size) % self.window_sizex = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))_, Hp, Wp, _ = x.shape# cyclic shiftif self.shift_size > 0:shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))else:shifted_x = xattn_mask = None# partition windowsx_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]# W-MSA/SW-MSAattn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]# merge windowsattn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]# reverse cyclic shiftif self.shift_size > 0:x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:x = shifted_xif pad_r > 0 or pad_b > 0:# 把前面pad的数据移除掉x = x[:, :H, :W, :].contiguous()x = x.view(B, H * W, C)# FFNx = shortcut + self.drop_path(x)x = x + self.drop_path(self.mlp(self.norm2(x)))return x

BasicLayer 模块:用于构建 Swin Transformer 的一个阶段,可以包含多个 SwinTransformerBlock 模块。

class BasicLayer(nn.Module):"""A basic Swin Transformer layer for one stage.Args:dim (int): Number of input channels.depth (int): Number of blocks.num_heads (int): Number of attention heads.window_size (int): Local window size.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNormdownsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: Noneuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False."""def __init__(self, dim, depth, num_heads, window_size,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):super().__init__()self.dim = dimself.depth = depthself.window_size = window_sizeself.use_checkpoint = use_checkpointself.shift_size = window_size // 2# build blocksself.blocks = nn.ModuleList([SwinTransformerBlock(dim=dim,num_heads=num_heads,window_size=window_size,shift_size=0 if (i % 2 == 0) else self.shift_size,mlp_ratio=mlp_ratio,qkv_bias=qkv_bias,drop=drop,attn_drop=attn_drop,drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,norm_layer=norm_layer)for i in range(depth)])# patch merging layerif downsample is not None:self.downsample = downsample(dim=dim, norm_layer=norm_layer)else:self.downsample = Nonedef create_mask(self, x, H, W):# calculate attention mask for SW-MSA# 保证Hp和Wp是window_size的整数倍Hp = int(np.ceil(H / self.window_size)) * self.window_sizeWp = int(np.ceil(W / self.window_size)) * self.window_size# 拥有和feature map一样的通道排列顺序,方便后续window_partitionimg_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]h_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]# [nW, Mh*Mw, Mh*Mw]attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))return attn_maskdef forward(self, x, H, W):attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]for blk in self.blocks:blk.H, blk.W = H, Wif not torch.jit.is_scripting() and self.use_checkpoint:x = checkpoint.checkpoint(blk, x, attn_mask)else:x = blk(x, attn_mask)if self.downsample is not None:x = self.downsample(x, H, W)H, W = (H + 1) // 2, (W + 1) // 2return x, H, W

SwinTransformer 模块:整个 Swin Transformer 模型的主体结构,包含了多个 BasicLayer 模块。

class SwinTransformer(nn.Module):r""" Swin TransformerA PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -https://arxiv.org/pdf/2103.14030Args:patch_size (int | tuple(int)): Patch size. Default: 4in_chans (int): Number of input image channels. Default: 3num_classes (int): Number of classes for classification head. Default: 1000embed_dim (int): Patch embedding dimension. Default: 96depths (tuple(int)): Depth of each Swin Transformer layer.num_heads (tuple(int)): Number of attention heads in different layers.window_size (int): Window size. Default: 7mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truedrop_rate (float): Dropout rate. Default: 0attn_drop_rate (float): Attention dropout rate. Default: 0drop_path_rate (float): Stochastic depth rate. Default: 0.1norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.patch_norm (bool): If True, add normalization after patch embedding. Default: Trueuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False"""def __init__(self, patch_size=4, in_chans=3, num_classes=1000,embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),window_size=7, mlp_ratio=4., qkv_bias=True,drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,norm_layer=nn.LayerNorm, patch_norm=True,use_checkpoint=False, **kwargs):super().__init__()self.num_classes = num_classesself.num_layers = len(depths)self.embed_dim = embed_dimself.patch_norm = patch_norm# stage4输出特征矩阵的channelsself.num_features = int(embed_dim * 2 ** (self.num_layers - 1))self.mlp_ratio = mlp_ratio# split image into non-overlapping patchesself.patch_embed = PatchEmbed(patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,norm_layer=norm_layer if self.patch_norm else None)self.pos_drop = nn.Dropout(p=drop_rate)# stochastic depthdpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule# build layersself.layers = nn.ModuleList()for i_layer in range(self.num_layers):# 注意这里构建的stage和论文图中有些差异# 这里的stage不包含该stage的patch_merging层,包含的是下个stage的layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),depth=depths[i_layer],num_heads=num_heads[i_layer],window_size=window_size,mlp_ratio=self.mlp_ratio,qkv_bias=qkv_bias,drop=drop_rate,attn_drop=attn_drop_rate,drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],norm_layer=norm_layer,downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,use_checkpoint=use_checkpoint)self.layers.append(layers)self.norm = norm_layer(self.num_features)self.avgpool = nn.AdaptiveAvgPool1d(1)self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):nn.init.trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)def forward(self, x):# x: [B, L, C]x, H, W = self.patch_embed(x)x = self.pos_drop(x)for layer in self.layers:x, H, W = layer(x, H, W)x = self.norm(x)  # [B, L, C]x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]x = torch.flatten(x, 1)x = self.head(x)return x

辅助函数drop_path_f :用于实现随机深度路径(Stochastic Depth)以及一些用于处理窗口的辅助函数。

def drop_path_f(x, drop_prob: float = 0., training: bool = False):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted forchanging the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use'survival rate' as the argument."""if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_()  # binarizeoutput = x.div(keep_prob) * random_tensorreturn output

三、训练与测试

3.1 模型训练

我们训练的模型是在通用的预训练模型swin_base_patch4_window7_224.pth上再次训练的,通过模型训练微调,能给得到一个效果更好的花卉检测模型。

首先,设置模型训练的关键参数,如检测目标类别数目(可以按照自己的数据集和检测种类进行设置)、批量大小、训练周期、输入数据的维度等参数。

    parser = argparse.ArgumentParser()parser.add_argument('--num_classes', type=int, default=5)parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=16)parser.add_argument('--lr', type=float, default=0.0001)# 数据集所在根目录# http://download.tensorflow.org/example_images/flower_photos.tgzparser.add_argument('--data-path', type=str,default="flower_photos")# 预训练权重路径,如果不想载入就设置为空字符parser.add_argument('--weights', type=str, default='./swin_base_patch4_window7_224.pth',help='initial weights path')# 是否冻结权重parser.add_argument('--freeze-layers', type=bool, default=False)parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

然后通过下面代码,设置模型训练设备和文件夹路径。接着对数据进行预处理并创建数据集和数据加载器。并根据命令行参数配置模型并加载预训练权重,可选择性地冻结部分模型参数。最后,使用AdamW优化器进行训练,并在每个epoch结束时保存模型权重。整个训练过程可以记录损失、准确率等指标,并将其写入TensorBoard。

def main(args):device = torch.device(args.device if torch.cuda.is_available() else "cpu")if os.path.exists("./weights") is False:os.makedirs("./weights")tb_writer = SummaryWriter()train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)img_size = 224data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(img_size),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),"val": transforms.Compose([transforms.Resize(int(img_size * 1.143)),transforms.CenterCrop(img_size),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}# 实例化训练数据集train_dataset = MyDataSet(images_path=train_images_path,images_class=train_images_label,transform=data_transform["train"])# 实例化验证数据集val_dataset = MyDataSet(images_path=val_images_path,images_class=val_images_label,transform=data_transform["val"])batch_size = args.batch_sizenw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workersprint('Using {} dataloader workers every process'.format(nw))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,pin_memory=True,num_workers=nw,collate_fn=train_dataset.collate_fn)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,pin_memory=True,num_workers=nw,collate_fn=val_dataset.collate_fn)model = create_model(num_classes=args.num_classes).to(device)if args.weights != "":assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)weights_dict = torch.load(args.weights, map_location=device)["model"]# 删除有关分类类别的权重for k in list(weights_dict.keys()):if "head" in k:del weights_dict[k]print(model.load_state_dict(weights_dict, strict=False))if args.freeze_layers:for name, para in model.named_parameters():# 除head外,其他权重全部冻结if "head" not in name:para.requires_grad_(False)else:print("training {}".format(name))pg = [p for p in model.parameters() if p.requires_grad]optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=5E-2)for epoch in range(args.epochs):# traintrain_loss, train_acc = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)# validateval_loss, val_acc = evaluate(model=model,data_loader=val_loader,device=device,epoch=epoch)train_acc_list.append(train_acc)train_loss_list.append(train_loss)val_acc_list.append(val_acc)val_loss_list.append(val_loss)tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]tb_writer.add_scalar(tags[0], train_loss, epoch)tb_writer.add_scalar(tags[1], train_acc, epoch)tb_writer.add_scalar(tags[2], val_loss, epoch)tb_writer.add_scalar(tags[3], val_acc, epoch)tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))

整个训练过程可以记录损失、准确率等指标
在这里插入图片描述

3.2 模型测试

可以分别使用predict.py对单张花卉图片和predict-batch.py批量进行检测。

# predict.py
def main(img_path):import osos.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")img_size = 224data_transform = transforms.Compose([transforms.Resize(int(img_size * 1.143)),transforms.CenterCrop(img_size),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])# load image# img_path = "./tulip.jpg"assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)img = Image.open(img_path)plt.imshow(img)# [N, C, H, W]img = data_transform(img)# expand batch dimensionimg = torch.unsqueeze(img, dim=0)# read class_indictjson_path = './class_indices.json'assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)json_file = open(json_path, "r")class_indict = json.load(json_file)# create modelmodel = create_model(num_classes=5).to(device)# load model weightsmodel_weight_path = "./weights/model-86.pth"model.load_state_dict(torch.load(model_weight_path, map_location=device))model.eval()with torch.no_grad():# predict classoutput = torch.squeeze(model(img.to(device))).cpu()predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()# print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],#                                              predict[predict_cla].numpy())# plt.title(print_res)for i in range(len(predict)):print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],predict[i].numpy()))# plt.show()res = class_indict[str(list(predict.numpy()).index(max(predict.numpy())))]num= "%.2f" % (max(predict.numpy()) * 100) + "%"print(res,num)return res,max(predict.numpy())# print(class_indict[str(list(predict.numpy()).index(max(predict.numpy())))])
def main():device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")img_size = 224data_transform = transforms.Compose([transforms.Resize(int(img_size * 1.143)),transforms.CenterCrop(img_size),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])# read class_indictjson_path = './class_indices.json'assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)json_file = open(json_path, "r")class_indict = json.load(json_file)# create modelmodel = create_model(num_classes=5).to(device)# load model weightsmodel_weight_path = "./weights/model-86.pth"model.load_state_dict(torch.load(model_weight_path, map_location=device))model.eval()# load imagedata_root = os.path.abspath(os.path.join(os.getcwd(), "../"))  # get data root pathall_dir = os.path.join(data_root, "data_set")  # flower data set path# img_path_list = ["../tulip.jpg", "../rose.jpg"]img_list = []test_dir = os.path.join(all_dir, "jpg")  # testtest_datasets = datasets.ImageFolder(test_dir, transform=data_transform)for img_path, idx in test_datasets.imgs:assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)# img_path = "./tulip.jpg"assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)img = Image.open(img_path)plt.imshow(img)# [N, C, H, W]img = data_transform(img)# expand batch dimensionimg = torch.unsqueeze(img, dim=0)with torch.no_grad():# predict classoutput = torch.squeeze(model(img.to(device))).cpu()predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()print_res = "image: {}  class: {}   prob: {:.3}".format(img_path, class_indict[str(predict_cla)],predict[predict_cla].numpy())print(print_res)

测试结果:

在这里插入图片描述

四、PyQt界面实现

当整个项目构建完成后,使用PyQt5编写可视化界面,可以支持花卉图像的检测。运行主界面.py,然后点击文件夹图片传入待检测的花卉图像即可。经过花卉识别系统识别后,会输出相应的类别和置信度。
在这里插入图片描述

参考资料

  1. 论文:https://arxiv.org/pdf/2103.14030.pdf
  2. 代码:https://github.com/microsoft/Swin-Transformer
  3. timm:https://hub.fastgit.org/rwightman/pytorch-image-models/blob/master/timm/models/swin_transformer.py
  4. Swin_Transformer网络模型详解资料:详解Swin_Transformer (SwinT)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816796.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软考125-上午题-【软件工程】-传统软件的测试策略

一、传统软件的测试策略 有效的软件测试实际上分为4步进行&#xff0c;即&#xff1a;单元测试、集成测试、确认测试、系统测试。 1-1、单元测试&#xff08;模块测试&#xff09; 单元测试也称为模块测试&#xff0c;在模块编写完成且无编译错误后就可以进行。 单元测试侧重…

温故知新之-TCP Keepalive机制及长短连接

[学习记录] 前言 TCP连接一旦建立&#xff0c;只要连接双方不主动 close &#xff0c;连接就会一直保持。但建立连接的双方并不是一直都存在数据交互&#xff0c;所以在实际使用中会存在两种情况&#xff1a;一种是每次使用完&#xff0c;主动close&#xff0c;即短连接&…

JVM虚拟机(五)强引用、软引用、弱引用、虚引用

目录 一、强引用二、软引用三、弱引用四、虚引用五、总结 引文&#xff1a; 在 Java 中一共存在 4 种引用&#xff1a;强、软、弱、虚。它们主要指的是&#xff0c;在进行垃圾回收的时候&#xff0c;对于不同的引用垃圾回收的情况是不一样的。下面我们就一起来看一下这 4 种引用…

51单片机实验03-单片机定时/计数器实验

目录 一、实验目的 二、实验说明 1、51单片机有两个16位内部计数器/定时器&#xff08;C/T&#xff0c; Counter/Timer&#xff09;。 2、模式寄存器TMOD 1) M1M0工作模式控制位&#xff1b; 2) C/T定时器或计数器选择位&#xff1a; 3&#xff09;GATE定时器/计数器运行…

软考系规第2章思维导图,软硬件网络和次新技术大杂烩

虽然目前系统规划与管理师的教程是否改版存在不确定性&#xff0c;但是不影响咱们先概要了解当前的教程&#xff0c;使用思维导图的方式粗读教程。 为了帮助你更好的学习系规教程&#xff0c;降低系规教程阅读门槛&#xff0c;指尖疯特发起了教程伴读活动&#xff0c;通过伴读脑…

关于GDAL计算图像坐标的几个问题

关于GDAL计算图像坐标的几个问题_gdal读取菱形四角点坐标-CSDN博客 这篇文章写的很好&#xff0c;讲清楚了图像行列号与图像点坐标&#xff08;x,y&#xff09;对应关系&#xff0c;以及图像行列号如何转为地理坐标的&#xff0c;转载一下做个备份。 1.关于GDAL计算图像坐标的…

部署Kafka集群图文详细步骤

1 集群规划 共三台虚拟机同处overlay网段&#xff0c;每台虚拟机部署一套kafka和zookeeper&#xff0c;kafka_manager安装其中一台虚拟机上即可。 HostnameIP addrPortListenerzk1docker-swarm分配2183:2181zk2docker-swarm分配2184:2181zk3docker-swarm分配2185:2181k1docke…

python-使用bottle时间简易服务器

python-使用bottle时间简易服务器 背景调试读取文本所有内容字段解释json字符串解析追加写入文件 整理后整理后写入文件方法将目录下所有文本的内容批量追加到一个文本搜索字符串方法实现简易服务器通过浏览器访问 背景 202310.txt内容是一段json字符串&#xff0c;目的是通过…

C++进阶技巧:如何在同一对象中存储左值或右值

如何在同一对象中存储左值或右值 一、背景二、跟踪值2.1、存储引用2.2、存储值 三、存储variant四、通用存储类4.1、定义const访问4.2、定义非const访问 五、创建存储六、总结 一、背景 C 代码似乎经常出现一个问题&#xff1a;如果该值可以来自左值或右值&#xff0c;则对象如…

Arrow, 一个六边形的 Python 时间库

文章目录 Arrow, 一个六边形的 Python 时间库第一部分&#xff1a;背景介绍第二部分&#xff1a;库是什么&#xff1f;第三部分&#xff1a;如何安装这个库&#xff1f;第四部分&#xff1a;库函数使用方法第五部分&#xff1a;场景应用第六部分&#xff1a;常见Bug及解决方案第…

代码学习记录42---动态规划

随想录日记part42 t i m e &#xff1a; time&#xff1a; time&#xff1a; 2024.04.14 主要内容&#xff1a;今天开始要学习动态规划的相关知识了&#xff0c;今天的内容主要涉及&#xff1a;最长递增子序列 &#xff1b;最长连续递增序列 &#xff1b;最长重复子数组 ;最长公…

关于部署ELK和EFLK的相关知识

文章目录 一、ELK日志分析系统1、ELK简介1.2 ElasticSearch1.3 Logstash1.4 Kibana&#xff08;展示数据可视化界面&#xff09;1.5 Filebeat 2、使用ELK的原因3、完整日志系统的基本特征4、ELK的工作原理 二、部署ELK日志分析系统1、服务器配置2、关闭防火墙3、ELK ElasticSea…

最优算法100例之48-链表中倒数第k个结点

专栏主页:计算机专业基础知识总结(适用于期末复习考研刷题求职面试)系列文章https://blog.csdn.net/seeker1994/category_12585732.html 题目描述 链表中倒数第k个结点 题解报告 ListNode* FindKthToTail(ListNode* pListHead, unsigned int k) {if(pListHead == NULL)ret…

Go语言入门|包、关键字和标识符

目录 Go语言 包文件 规则 关键字 规则 标识符 规则 预定义标识符 Go语言 Go语言是一种静态类型、编译型和并发型的编程语言&#xff0c;由Google开发。Go的源代码文件以.go为扩展名&#xff0c;文件名通常与包名保持一致。一个Go文件可以包含多个顶级声明&#xff0c;…

访问者模式类图与代码

某图书管理系统中管理着两种类型的文献&#xff1a;图书和论文。现在要求统计所有馆藏文献的总页码(假设图书馆中有一本540页的图书和两篇各25页的论文&#xff0c;那么馆藏文献的总页码就是590页)。采用Visitor(访问者)模式实现该要求&#xff0c;得到如图7.16所示的类图。 访…

Project Euler_Problem 193_Few Repeated Digits_欧拉筛+容斥公式

解题思路&#xff1a;暴力搜索 代码&#xff1a; void solve() {ll i, j,k,x,y,z,p,q,u,v,l,l1;N 999966663333, NN 1024;//N 1000;double a, b, c,d;M.NT.get_prime_Euler(1000000);l M.NT.pcnt;for (i 1; i < l; i) {u M.NT.prime[i];v M.NT.prime[i 1];x u * …

认证、授权、凭证、保密、传输、验证

系统如何正确分辨操作用户的真实身份&#xff1f; 认证&#xff08;Authertication) :系统如何正确分辨出操作用户的真实身份&#xff1f; 授权&#xff08;AUthorization&#xff09;**&#xff1a;系统如何控制一个用户该看到哪些数据、能操作哪些功能&#xff1f; 凭证&…

Redis报错:CROSSSLOT Keys in request don‘t hash to the same slot的解决方案

最近&#xff0c;项目上线的时候&#xff0c;出现了一个Redis的报错&#xff1a;CROSSSLOT Keys in request dont hash to the same slot&#xff0c;这个在内网环境下无法复现&#xff0c;因为正式环境的Redis是cluster集群模式&#xff0c;而我们内网环境是单机模式。(后面我…

ELK(Elasticsearch+Logstash+Kibana)日志分析系统

目录 前言 一、ELK日志分析系统概述 1、三大组件工具介绍 1.1 Elasticsearch 1.1.1 Elasticsearch概念 1.1.2 关系型数据库和ElasticSearch中的对应关系 1.1.3 Elasticsearch提供的操作命令 1.2 Logstash 1.2.1 Logstash概念 1.2.2 Logstash的主要组件 1.2.3 Logsta…

TCM(Tightly Coupled Memory)紧密耦合存储器简介

在ARM Cortex处理器中&#xff0c;TCM通常指的是紧密耦合存储器&#xff08;Tightly Coupled Memory&#xff09;。TCM是一种位于处理器核心旁边的高速存储器&#xff0c;它的设计目的是为了提供低延迟和高带宽的内存访问性能。 TCM的特点是它与处理器内核紧密耦合&#xff0c;…