C++进阶技巧:如何在同一对象中存储左值或右值

如何在同一对象中存储左值或右值

  • 一、背景
  • 二、跟踪值
    • 2.1、存储引用
    • 2.2、存储值
  • 三、存储variant
  • 四、通用存储类
    • 4.1、定义const访问
    • 4.2、定义非const访问
  • 五、创建存储
  • 六、总结

一、背景

C++ 代码似乎经常出现一个问题:如果该值可以来自左值或右值,则对象如何跟踪该值?即如果保留该值作为引用,那么就无法绑定到临时对象。如果将其保留为一个值,那么当它从左值初始化时,会产生不必要的副本。

有几种方法可以应对这种情况。使用std::variant提供了一个很好的折衷方案来获得有表现力的代码。
在这里插入图片描述

二、跟踪值

假设有一个类MyClass。想让MyClass访问某个std::string。如何表示MyClass内部的字符串?
有两种选择:

  • 将其存储为引用。
  • 将其存储为副本。

2.1、存储引用

如果将其存储为引用,例如const引用:

class MyClass
{
public:explicit MyClass(std::string const& s) : s_(s) {}void print() const{std::cout << s_ << '\n';}
private:std::string const& s_;
};

则可以用一个左值初始化我们的引用:

std::string s = "hello";
MyClass myObject{s};
myObject.print();

看起来很不错。但是,如果想用右值初始化我们的对象呢?例如:

MyClass myObject{std::string{"hello"}};
myObject.print();

或者这样的代码:

std::string getString(); // function declaration returning by valueMyClass myObject{getString()};
myObject.print();

那么代码具有未定义的行为。原因是,临时字符串对象在创建它的同一条语句中被销毁。当调用print时,字符串已经被破坏,使用它是非法的,并导致未定义的行为。

为了说明这一点,如果将std::string替换为类型X,并且在X的析构函数打印日志:

struct X
{~X() { std::cout << "X destroyed" << '\n';}
};class MyClass
{
public:explicit MyClass(X const& x) : x_(x) {}void print() const{// using x_;}
private:X const& x_;
};

在调用的地方也打印日志:

MyClass myObject(X{});
std::cout << "before print" << '\n';
myObject.print();

输出:

X destroyed
before print

可以看到,在尝试使用之前,这个X已经被破坏了。

完整示例:

#include <iostream>
#include <string>struct X
{~X() { std::cout << "X destroyed" << '\n';}
};class MyClass
{
public:explicit MyClass(X const& x) : x_(x) {}void print(){(void) x_; // using x_;}
private:X const& x_;
};int main()
{MyClass myObject(X{});std::cout << "before print" << '\n';myObject.print();
}

2.2、存储值

另一种选择是存储一个值。这允许使用move语义将传入的临时值移动到存储值中:

class MyClass
{
public:explicit MyClass(std::string s) : s_(std::move(s)) {}void print() const{std::cout << s_ << '\n';}
private:std::string s_;
};

现在调用它:

MyClass myObject{std::string{"hello"}};
myObject.print();

产生两次移动(一次构造s,一次构造s_),并且没有未定义的行为。实际上,即使临时对象被销毁,print也会使用类内部的实例。

不幸的是,如果带着左值返回到第一个调用点:

std::string s = "hello";
MyClass myObject{s};
myObject.print();

那么就不再做两次移动了:做了一次复制(构造s)和一次移动(构造s_)。

更重要的是,我们的目的是给MyClass访问字符串的权限,如果做一个拷贝,就有了一个不同于进来的实例。所以它们不会同步。

对于临时对象来说,这不是问题,因为它无论如何都会被销毁,并且我们在之前将它移了进来,所以仍然可以访问字符串。但是通过复制,我们不再给MyClass访问传入字符串的权限。

所以存储一个值也不是一个好的解决方案。

三、存储variant

存储引用不是一个好的解决方案,存储值也不是一个好的解决方案。我们想做的是,如果引用是从左值初始化的,则存储引用;如果引用是从右值初始化的,则存储引用。

但是数据成员只能是一种类型:值或引用,对吗?

但是,对于std::variant,它可以是任意一个。不过,如果尝试在一个变量中存储引用,就像这样:

std::variant<std::string, std::string const&>

将得到一个编译错误:

variant must have no reference alternative

为了达到我们的目的,需要将引用放在另一个类型中;即必须编写特定的代码来处理数据成员。如果为std::string编写这样的代码,则不能将其用于其他类型。

在这一点上,最好以通用的方式编写代码。

四、通用存储类

存储需要是一个值或一个引用。既然现在是为通用目的编写这段代码,那么也可以允许非const引用。由于变量不能直接保存引用,那么可以将它们存储到包装器中:

template<typename T>
struct NonConstReference
{T& value_;explicit NonConstReference(T& value) : value_(value){};
};template<typename T>
struct ConstReference
{T const& value_;explicit ConstReference(T const& value) : value_(value){};
};template<typename T>
struct Value
{T value_;explicit Value(T&& value) : value_(std::move(value)) {}
};

将存储定义为这两种情况之一:

template<typename T>
using Storage = std::variant<Value<T>, ConstReference<T>, NonConstReference<T>>;

现在需要通过提供引用来访问变量的底层值。创建了两种类型的访问:一种是const,另一种是非const

4.1、定义const访问

要定义const访问,需要使变量内部的三种可能类型中的每一种都产生一个const引用。

为了访问变量中的数据,将使用std::visit和规范的overload 模式,这可以在c++ 17中实现:

template<typename... Functions>
struct overload : Functions...
{using Functions::operator()...;overload(Functions... functions) : Functions(functions)... {}
};

要获得const引用,只需为每种variant创建一个:

template<typename T>
T const& getConstReference(Storage<T> const& storage)
{return std::visit(overload([](Value<T> const& value) -> T const&             { return value.value_; },[](NonConstReference<T> const& value) -> T const& { return value.value_; },[](ConstReference<T> const& value) -> T const&    { return value.value_; }),storage);
}

4.2、定义非const访问

非const引用的创建使用相同的技术,除了variantConstReference之外,它不能产生非const引用。然而,当std::visit访问一个变量时,必须为它的每一个可能的类型编写代码:

template<typename T>
T& getReference(Storage<T>& storage)
{return std::visit(overload([](Value<T>& value) -> T&             { return value.value_; },[](NonConstReference<T>& value) -> T& { return value.value_; },[](ConstReference<T>& ) -> T&.        { /* code handling the error! */ }),storage);
}

进一步优化,抛出一个异常:

struct NonConstReferenceFromReference : public std::runtime_error
{explicit NonConstReferenceFromReference(std::string const& what) : std::runtime_error{what} {}
};template<typename T>
T& getReference(Storage<T>& storage)
{return std::visit(overload([](Value<T>& value) -> T&             { return value.value_; },[](NonConstReference<T>& value) -> T& { return value.value_; },[](ConstReference<T>& ) -> T& { throw NonConstReferenceFromReference{"Cannot get a non const reference from a const reference"} ; }),storage);
}

五、创建存储

已经定义了存储类,可以在示例中使用它来访问传入的std::string,而不管它的值类别:

class MyClass
{
public:explicit MyClass(std::string& value) :       storage_(NonConstReference(value)){}explicit MyClass(std::string const& value) : storage_(ConstReference(value)){}explicit MyClass(std::string&& value) :      storage_(Value(std::move(value))){}void print() const{std::cout << getConstReference(storage_) << '\n';}private:Storage<std::string> storage_;
};

(1)调用时带左值:

std::string s = "hello";
MyClass myObject{s};
myObject.print();

匹配第一个构造函数,并在存储成员内部创建一个NonConstReference。当print函数调用getConstReference时,非const引用被转换为const引用。

(2)使用临时值:

MyClass myObject{std::string{"hello"}};
myObject.print();

这个函数匹配第三个构造函数,并将值移动到存储中。getConstReference然后将该值的const引用返回给print函数。

六、总结

variant为c++中跟踪左值或右值的经典问题提供了一种非常适合的解决方案。这种技术的代码具有表现力,因为std::variant允许表达与我们的意图非常接近的东西:“根据上下文,对象可以是引用或值”。

在C++ 17和std::variant之前,解决这个问题很棘手,导致代码难以正确编写。随着语言的发展,标准库变得越来越强大,可以用越来越多的表达性代码来表达我们的意图。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816785.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Arrow, 一个六边形的 Python 时间库

文章目录 Arrow, 一个六边形的 Python 时间库第一部分&#xff1a;背景介绍第二部分&#xff1a;库是什么&#xff1f;第三部分&#xff1a;如何安装这个库&#xff1f;第四部分&#xff1a;库函数使用方法第五部分&#xff1a;场景应用第六部分&#xff1a;常见Bug及解决方案第…

代码学习记录42---动态规划

随想录日记part42 t i m e &#xff1a; time&#xff1a; time&#xff1a; 2024.04.14 主要内容&#xff1a;今天开始要学习动态规划的相关知识了&#xff0c;今天的内容主要涉及&#xff1a;最长递增子序列 &#xff1b;最长连续递增序列 &#xff1b;最长重复子数组 ;最长公…

关于部署ELK和EFLK的相关知识

文章目录 一、ELK日志分析系统1、ELK简介1.2 ElasticSearch1.3 Logstash1.4 Kibana&#xff08;展示数据可视化界面&#xff09;1.5 Filebeat 2、使用ELK的原因3、完整日志系统的基本特征4、ELK的工作原理 二、部署ELK日志分析系统1、服务器配置2、关闭防火墙3、ELK ElasticSea…

最优算法100例之48-链表中倒数第k个结点

专栏主页:计算机专业基础知识总结(适用于期末复习考研刷题求职面试)系列文章https://blog.csdn.net/seeker1994/category_12585732.html 题目描述 链表中倒数第k个结点 题解报告 ListNode* FindKthToTail(ListNode* pListHead, unsigned int k) {if(pListHead == NULL)ret…

Go语言入门|包、关键字和标识符

目录 Go语言 包文件 规则 关键字 规则 标识符 规则 预定义标识符 Go语言 Go语言是一种静态类型、编译型和并发型的编程语言&#xff0c;由Google开发。Go的源代码文件以.go为扩展名&#xff0c;文件名通常与包名保持一致。一个Go文件可以包含多个顶级声明&#xff0c;…

访问者模式类图与代码

某图书管理系统中管理着两种类型的文献&#xff1a;图书和论文。现在要求统计所有馆藏文献的总页码(假设图书馆中有一本540页的图书和两篇各25页的论文&#xff0c;那么馆藏文献的总页码就是590页)。采用Visitor(访问者)模式实现该要求&#xff0c;得到如图7.16所示的类图。 访…

Project Euler_Problem 193_Few Repeated Digits_欧拉筛+容斥公式

解题思路&#xff1a;暴力搜索 代码&#xff1a; void solve() {ll i, j,k,x,y,z,p,q,u,v,l,l1;N 999966663333, NN 1024;//N 1000;double a, b, c,d;M.NT.get_prime_Euler(1000000);l M.NT.pcnt;for (i 1; i < l; i) {u M.NT.prime[i];v M.NT.prime[i 1];x u * …

认证、授权、凭证、保密、传输、验证

系统如何正确分辨操作用户的真实身份&#xff1f; 认证&#xff08;Authertication) :系统如何正确分辨出操作用户的真实身份&#xff1f; 授权&#xff08;AUthorization&#xff09;**&#xff1a;系统如何控制一个用户该看到哪些数据、能操作哪些功能&#xff1f; 凭证&…

Redis报错:CROSSSLOT Keys in request don‘t hash to the same slot的解决方案

最近&#xff0c;项目上线的时候&#xff0c;出现了一个Redis的报错&#xff1a;CROSSSLOT Keys in request dont hash to the same slot&#xff0c;这个在内网环境下无法复现&#xff0c;因为正式环境的Redis是cluster集群模式&#xff0c;而我们内网环境是单机模式。(后面我…

ELK(Elasticsearch+Logstash+Kibana)日志分析系统

目录 前言 一、ELK日志分析系统概述 1、三大组件工具介绍 1.1 Elasticsearch 1.1.1 Elasticsearch概念 1.1.2 关系型数据库和ElasticSearch中的对应关系 1.1.3 Elasticsearch提供的操作命令 1.2 Logstash 1.2.1 Logstash概念 1.2.2 Logstash的主要组件 1.2.3 Logsta…

TCM(Tightly Coupled Memory)紧密耦合存储器简介

在ARM Cortex处理器中&#xff0c;TCM通常指的是紧密耦合存储器&#xff08;Tightly Coupled Memory&#xff09;。TCM是一种位于处理器核心旁边的高速存储器&#xff0c;它的设计目的是为了提供低延迟和高带宽的内存访问性能。 TCM的特点是它与处理器内核紧密耦合&#xff0c;…

【鸿蒙开发】第二十一章 Media媒体服务(一)

1 简介 Media Kit&#xff08;媒体服务&#xff09;提供了AVPlayer和AVRecorder用于播放、录制音视频。 在Media Kit的开发指导中&#xff0c;将介绍各种涉及音频、视频播放或录制功能场景的开发方式&#xff0c;指导开发者如何使用系统提供的音视频API实现对应功能。比如使用…

Textarea的常用属性thymeleaf

文章目录 textareathymeleaf1.基础使用2.代码块的切换3.链接表达式1&#xff09;范例 4.前后端5.遍历1.th:each2.th:switch3.添加属性 组件替换 每周总结 textarea -webkit-scrollbar&#xff1a;width&#xff1a;0&#xff1b;让滚动条隐藏&#xff0c;宽度为0 resize&#x…

力扣 | 148. 排序链表

和数组里面的归并排序思想一致 class Solution {public ListNode sortList(ListNode head) {//过滤条件if(head null || head.next null)return head;ListNode slow head;ListNode fast head.next;while (fast ! null && fast.next ! null){slow slow.next;fast …

c++的学习之路:20、继承(1)

摘要 本章主要是讲以一下继承的一些概念以及使用方法等等。 目录 摘要 一、继承的概念及定义 1、继承的概念 2、继承定义 1.2.1、定义格式 1.2.2、继承关系和访问限定符 1.2.3、继承基类成员访问方式的变化 3、总结 二、基类和派生类对象赋值转换 三、继承中的作用…

9【原型模式】复制一个已存在的对象来创建新的对象

你好&#xff0c;我是程序员雪球。 今天我们来学习23种设计模式之原型模式&#xff0c;在平时开发过程中比较少见。我带你了解什么是原型模式&#xff0c;使用场景有哪些&#xff1f;有什么注意事项&#xff1f;深拷贝与浅拷贝的区别&#xff0c;最后用代码实现一个简单的示例…

大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

文章目录 大数据深度学习&#xff1a;基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统一、项目概述二、深度学习卷积神经网络&#xff08;Convolutional Neural Networks&#xff0c;简称CNN&#xff09;三、部分数据库架构四、系统实现系统模型部分核心代码模型训…

【Java】新手一步一步安装 Java 语言开发环境

文章目录 一、Windows 10 系统 安装 JDK8二、 Mac 系统 安装 JDK8三、IDEA安装 一、Windows 10 系统 安装 JDK8 &#xff08;1&#xff09;打开 JDK下载网站&#xff0c;根据系统配置选择版本&#xff0c;这里选择windows 64位的版本&#xff0c;点击下载&#xff08;这里需要…

Finetuning vs. Prompting:大语言模型两种使用方式

目录 前言1. 对于大型语言模型的两种不同期待2. Finetune(专才)3. Prompt(通才)3.1 In-context Learning3.2 Instruction-tuning3.3 Chain of Thought(COT) Prompting3.4 用机器来找Prompt 总结参考 前言 这里和大家分享下关于大语言模型的两种使用方式&#xff0c;一种是 Fine…

2024最新 PyCharm 2024.1 更新要点汇总

2024最新 PyCharm 2024.1 更新要点汇总 文章目录 2024最新 PyCharm 2024.1 更新要点汇总摘要引言 Hugging Face&#xff1a;模型和数据集的快速文档预览针对 JavaScript 和 TypeScript 的全行代码补全 PyCharm Professional编辑器中的粘性行编辑器内代码审查新终端 Beta新的 AI…