代码学习记录42---动态规划

随想录日记part42

t i m e : time: time 2024.04.14



主要内容:今天开始要学习动态规划的相关知识了,今天的内容主要涉及:最长递增子序列 ;最长连续递增序列 ;最长重复子数组 ;最长公共子序列;不相交的线 ;最大子序和动态规划

  • 300.最长递增子序列
  • 674. 最长连续递增序列
  • 718. 最长重复子数组
  • 1143.最长公共子序列
  • 1035.不相交的线
  • 53. 最大子序和动态规划


动态规划五部曲:
【1】.确定dp数组以及下标的含义
【2】.确定递推公式
【3】.dp数组如何初始化
【4】.确定遍历顺序
【5】.举例推导dp数组

Topic1最长递增子序列

在这里插入图片描述

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
2.确定递推公式:

//位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

3.dp数组如何初始化

 Arrays.fill(dp, 1);

4.确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
5.举例推导dp数组
输入:[0,1,0,3,2],dp数组的变化如下:
在这里插入图片描述
代码如下:

class Solution {public int lengthOfLIS(int[] nums) {int len = nums.length;// dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度int[] dp = new int[len];Arrays.fill(dp, 1);if (len == 1)return 1;dp[0] = 1;int max_value = 1;for (int i = 1; i < len; i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j])dp[i] = Math.max(dp[j] + 1, dp[i]);}max_value = Math.max(max_value, dp[i]);}return max_value;}
}

时间复杂度 O ( n 2 ) O(n^2) O(n2)
空间复杂度 O ( n ) O(n) O(n)



Topic2最长连续递增序列

题目:
在这里插入图片描述

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
2.确定递推公式:

if(nums[i]>nums[i-1])dp[i]=dp[i-1]+1;

3.dp数组如何初始化

 Arrays.fill(dp, 1);

4.确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
5.举例推导dp数组
已输入nums = [1,3,5,4,7]为例,dp数组状态如下:
在这里插入图片描述

class Solution {public int findLengthOfLCIS(int[] nums) {int len = nums.length;int[] dp = new int[len];Arrays.fill(dp, 1);int result = 1;for (int i = 1; i < len; i++) {if (nums[i] > nums[i - 1]) {dp[i] = dp[i - 1] + 1;}result = Math.max(result, dp[i]);}return result;}
}

时间复杂度 O ( n ) O(n) O(n)
空间复杂度 O ( n ) O(n) O(n)



Topic3最长重复子数组

题目:
在这里插入图片描述

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )
2.确定递推公式:
根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;根据递推公式可以看出,遍历i 和 j 要从1开始!
3.dp数组如何初始化

 for(int i=0;i<=nums1.length;i++) dp[i][0]=0;for(int i=0;i<=nums2.length;i++) dp[0][i]=0;

4.确定遍历顺序
外层for循环遍历A,内层for循环遍历B。
5.举例推导dp数组
拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:
在这里插入图片描述

class Solution {public int findLength(int[] nums1, int[] nums2) {// dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i -1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )int[][] dp = new int[nums1.length + 1][nums2.length + 1];for (int i = 0; i <= nums1.length; i++)dp[i][0] = 0;for (int i = 0; i <= nums2.length; i++)dp[0][i] = 0;int result = 0;for (int i = 1; i < nums1.length + 1; i++) {for (int j = 1; j < nums2.length + 1; j++) {if (nums1[i - 1] == nums2[j - 1])dp[i][j] = dp[i - 1][j - 1] + 1;result = Math.max(result, dp[i][j]);}}return result;}
}


Topic4最长公共子序列

题目:
在这里插入图片描述

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
2.确定递推公式:
主要就是两大情况:1.text1[i - 1] 与 text2[j - 1]相同 2.text1[i - 1] 与 text2[j - 1]不相同
如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
3.dp数组如何初始化

 for(int i=0;i<=nums1.length;i++) dp[i][0]=0;for(int i=0;i<=nums2.length;i++) dp[0][i]=0;

4.确定遍历顺序
外层for循环遍历A,内层for循环遍历B。
5.举例推导dp数组
以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:
在这里插入图片描述

class Solution {public int longestCommonSubsequence(String text1, String text2) {int len1 = text1.length();int len2 = text2.length();int[][] dp = new int[len1 + 1][len2 + 1];for (int i = 0; i <= len1; i++)dp[i][0] = 0;for (int i = 0; i <= len2; i++)dp[0][i] = 0;int result = 0;for (int i = 1; i < len1 + 1; i++) {for (int j = 1; j < len2 + 1; j++) {if (text1.charAt(i - 1) == text2.charAt(j - 1))dp[i][j] = dp[i - 1][j - 1] + 1;elsedp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);result = Math.max(result, dp[i][j]);}}return result;}
}

时间复杂度 O ( n ∗ m ) O(n*m) O(nm)
空间复杂度 O ( n ∗ m ) O(n*m) O(nm)



Topic5不相交的线

题目:
在这里插入图片描述
在这里插入图片描述

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
2.确定递推公式:
主要就是两大情况:1.text1[i - 1] 与 text2[j - 1]相同 2.text1[i - 1] 与 text2[j - 1]不相同
如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
3.dp数组如何初始化

 for(int i=0;i<=nums1.length;i++) dp[i][0]=0;for(int i=0;i<=nums2.length;i++) dp[0][i]=0;

4.确定遍历顺序
外层for循环遍历A,内层for循环遍历B。
5.举例推导dp数组

class Solution {public int maxUncrossedLines(int[] nums1, int[] nums2) {int len1 = nums1.length;int len2 = nums2.length;int[][] dp = new int[len1 + 1][len2 + 1];for (int i = 0; i <= len1; i++)dp[i][0] = 0;for (int i = 0; i <= len2; i++)dp[0][i] = 0;int result = 0;for (int i = 1; i < len1 + 1; i++) {for (int j = 1; j < len2 + 1; j++) {if (nums1[i - 1] == nums2[j - 1])dp[i][j] = dp[i - 1][j - 1] + 1;elsedp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);result = Math.max(result, dp[i][j]);}}return result;}
}

时间复杂度 O ( n ∗ m ) O(n*m) O(nm)
空间复杂度 O ( n ∗ m ) O(n*m) O(nm)



Topic6最大子序和动态规划

题目:
在这里插入图片描述

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]
2.确定递推公式:
dp[i]只有两个方向可以推出来:
dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
nums[i],即:从头开始计算当前连续子序列和
一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);
3.dp数组如何初始化
dp[0] = nums[0]
4.确定遍历顺序
递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。
5.举例推导dp数组
以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:
在这里插入图片描述

class Solution {public int maxSubArray(int[] nums) {int len = nums.length;int[] dp = new int[len];Arrays.fill(dp, Integer.MIN_VALUE);int tem;dp[0] = nums[0];if (len == 0)return 0;int result = nums[0];for (int i = 1; i < len; i++) {dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);result = Math.max(result, dp[i]);}return result;}
}

时间复杂度 O ( n ) O(n) O(n)
空间复杂度 O ( n ) O(n) O(n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816782.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于部署ELK和EFLK的相关知识

文章目录 一、ELK日志分析系统1、ELK简介1.2 ElasticSearch1.3 Logstash1.4 Kibana&#xff08;展示数据可视化界面&#xff09;1.5 Filebeat 2、使用ELK的原因3、完整日志系统的基本特征4、ELK的工作原理 二、部署ELK日志分析系统1、服务器配置2、关闭防火墙3、ELK ElasticSea…

最优算法100例之48-链表中倒数第k个结点

专栏主页:计算机专业基础知识总结(适用于期末复习考研刷题求职面试)系列文章https://blog.csdn.net/seeker1994/category_12585732.html 题目描述 链表中倒数第k个结点 题解报告 ListNode* FindKthToTail(ListNode* pListHead, unsigned int k) {if(pListHead == NULL)ret…

Go语言入门|包、关键字和标识符

目录 Go语言 包文件 规则 关键字 规则 标识符 规则 预定义标识符 Go语言 Go语言是一种静态类型、编译型和并发型的编程语言&#xff0c;由Google开发。Go的源代码文件以.go为扩展名&#xff0c;文件名通常与包名保持一致。一个Go文件可以包含多个顶级声明&#xff0c;…

访问者模式类图与代码

某图书管理系统中管理着两种类型的文献&#xff1a;图书和论文。现在要求统计所有馆藏文献的总页码(假设图书馆中有一本540页的图书和两篇各25页的论文&#xff0c;那么馆藏文献的总页码就是590页)。采用Visitor(访问者)模式实现该要求&#xff0c;得到如图7.16所示的类图。 访…

Project Euler_Problem 193_Few Repeated Digits_欧拉筛+容斥公式

解题思路&#xff1a;暴力搜索 代码&#xff1a; void solve() {ll i, j,k,x,y,z,p,q,u,v,l,l1;N 999966663333, NN 1024;//N 1000;double a, b, c,d;M.NT.get_prime_Euler(1000000);l M.NT.pcnt;for (i 1; i < l; i) {u M.NT.prime[i];v M.NT.prime[i 1];x u * …

认证、授权、凭证、保密、传输、验证

系统如何正确分辨操作用户的真实身份&#xff1f; 认证&#xff08;Authertication) :系统如何正确分辨出操作用户的真实身份&#xff1f; 授权&#xff08;AUthorization&#xff09;**&#xff1a;系统如何控制一个用户该看到哪些数据、能操作哪些功能&#xff1f; 凭证&…

Redis报错:CROSSSLOT Keys in request don‘t hash to the same slot的解决方案

最近&#xff0c;项目上线的时候&#xff0c;出现了一个Redis的报错&#xff1a;CROSSSLOT Keys in request dont hash to the same slot&#xff0c;这个在内网环境下无法复现&#xff0c;因为正式环境的Redis是cluster集群模式&#xff0c;而我们内网环境是单机模式。(后面我…

ELK(Elasticsearch+Logstash+Kibana)日志分析系统

目录 前言 一、ELK日志分析系统概述 1、三大组件工具介绍 1.1 Elasticsearch 1.1.1 Elasticsearch概念 1.1.2 关系型数据库和ElasticSearch中的对应关系 1.1.3 Elasticsearch提供的操作命令 1.2 Logstash 1.2.1 Logstash概念 1.2.2 Logstash的主要组件 1.2.3 Logsta…

TCM(Tightly Coupled Memory)紧密耦合存储器简介

在ARM Cortex处理器中&#xff0c;TCM通常指的是紧密耦合存储器&#xff08;Tightly Coupled Memory&#xff09;。TCM是一种位于处理器核心旁边的高速存储器&#xff0c;它的设计目的是为了提供低延迟和高带宽的内存访问性能。 TCM的特点是它与处理器内核紧密耦合&#xff0c;…

【鸿蒙开发】第二十一章 Media媒体服务(一)

1 简介 Media Kit&#xff08;媒体服务&#xff09;提供了AVPlayer和AVRecorder用于播放、录制音视频。 在Media Kit的开发指导中&#xff0c;将介绍各种涉及音频、视频播放或录制功能场景的开发方式&#xff0c;指导开发者如何使用系统提供的音视频API实现对应功能。比如使用…

Textarea的常用属性thymeleaf

文章目录 textareathymeleaf1.基础使用2.代码块的切换3.链接表达式1&#xff09;范例 4.前后端5.遍历1.th:each2.th:switch3.添加属性 组件替换 每周总结 textarea -webkit-scrollbar&#xff1a;width&#xff1a;0&#xff1b;让滚动条隐藏&#xff0c;宽度为0 resize&#x…

力扣 | 148. 排序链表

和数组里面的归并排序思想一致 class Solution {public ListNode sortList(ListNode head) {//过滤条件if(head null || head.next null)return head;ListNode slow head;ListNode fast head.next;while (fast ! null && fast.next ! null){slow slow.next;fast …

c++的学习之路:20、继承(1)

摘要 本章主要是讲以一下继承的一些概念以及使用方法等等。 目录 摘要 一、继承的概念及定义 1、继承的概念 2、继承定义 1.2.1、定义格式 1.2.2、继承关系和访问限定符 1.2.3、继承基类成员访问方式的变化 3、总结 二、基类和派生类对象赋值转换 三、继承中的作用…

9【原型模式】复制一个已存在的对象来创建新的对象

你好&#xff0c;我是程序员雪球。 今天我们来学习23种设计模式之原型模式&#xff0c;在平时开发过程中比较少见。我带你了解什么是原型模式&#xff0c;使用场景有哪些&#xff1f;有什么注意事项&#xff1f;深拷贝与浅拷贝的区别&#xff0c;最后用代码实现一个简单的示例…

大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

文章目录 大数据深度学习&#xff1a;基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统一、项目概述二、深度学习卷积神经网络&#xff08;Convolutional Neural Networks&#xff0c;简称CNN&#xff09;三、部分数据库架构四、系统实现系统模型部分核心代码模型训…

【Java】新手一步一步安装 Java 语言开发环境

文章目录 一、Windows 10 系统 安装 JDK8二、 Mac 系统 安装 JDK8三、IDEA安装 一、Windows 10 系统 安装 JDK8 &#xff08;1&#xff09;打开 JDK下载网站&#xff0c;根据系统配置选择版本&#xff0c;这里选择windows 64位的版本&#xff0c;点击下载&#xff08;这里需要…

Finetuning vs. Prompting:大语言模型两种使用方式

目录 前言1. 对于大型语言模型的两种不同期待2. Finetune(专才)3. Prompt(通才)3.1 In-context Learning3.2 Instruction-tuning3.3 Chain of Thought(COT) Prompting3.4 用机器来找Prompt 总结参考 前言 这里和大家分享下关于大语言模型的两种使用方式&#xff0c;一种是 Fine…

2024最新 PyCharm 2024.1 更新要点汇总

2024最新 PyCharm 2024.1 更新要点汇总 文章目录 2024最新 PyCharm 2024.1 更新要点汇总摘要引言 Hugging Face&#xff1a;模型和数据集的快速文档预览针对 JavaScript 和 TypeScript 的全行代码补全 PyCharm Professional编辑器中的粘性行编辑器内代码审查新终端 Beta新的 AI…

js+网络摄像头实现人体肢体关键点动作捕获

最近有一个项目&#xff0c;客户需要用户人体姿势识别&#xff0c;进行表演考核用途&#xff0c;或者康复中心用户恢复护理考核&#xff0c;需要用摄像头进行人体四肢进行肢体关键点对比考核&#xff0c;资料还是太少了。只有个别大佬发了部分技术指导。感觉写的不错。 阿里云…

【微信小程序——案例——本地生活(列表页面)】

案例——本地生活&#xff08;列表页面&#xff09; 九宫格中实现导航跳转——以汽车服务为案例&#xff08;之后可以全部实现页面跳转——现在先实现一个&#xff09; 在app.json中添加新页面 修改之前的九宫格view改为navitage 效果图&#xff1a; 动态设置标题内容—…