文献阅读:LESS: Selecting Influential Data for Targeted Instruction Tuning

  • 文献阅读:LESS: Selecting Influential Data for Targeted Instruction Tuning
    • 1. 文章简介
    • 2. 方法介绍
      • 1. Overview
      • 2. 原理说明
        • 1. SGD上的定义
        • 2. Adam上的定义
      • 3. 具体实现
        • 1. Overview
        • 1. LoRA使用
        • 2. 数据选择
        • 3. LESS-T
    • 3. 实验考察 & 结论
      • 1. 实验设计
      • 2. 主要结果
      • 3. 细节讨论
        • 1. 计算复杂度分析
        • 2. warmup是否必要
        • 3. checkpoint的影响(N的影响)
        • 4. LoRA Dimension的影响
    • 4. 总结 & 思考
  • 文献链接:https://arxiv.org/abs/2402.04333
  • Github链接:https://github.com/princeton-nlp/LESS

1. 文章简介

这篇文章是陈丹琦大佬在今天二月给出的关于LLM Tuning的一篇新作。

这篇文章同样是一篇比较fundamental的基础研究工作,考察的是LLM训练,或者说任意模型训练时如何最优化的选择训练数据,从而在尽可能不损失模型性能的情况下,最优化模型训练的效率,使得模型收敛的又快又好。

相似的工作之前有主动学习相关的一系列工作,这里倒是有些区别,因为主动学习感觉还是对于未标注数据进行最优化的选取,但是这里的LESS方法感觉还是在已有的标注数据当中选取一个子集,使得模型获得足量且优秀的训练结果。

下面,我们就来看看文中给出的具体实现方法和对应的实验考察。

2. 方法介绍

1. Overview

首先,我们来看一下LESS的整体的原理说明和实现。

LESS的全程的话是Low-rank gradiEnt Similarity Search,其整体的思路的话其实还是比较直接的,就是通过数据在模型进行反向传播时产生的梯度大小来判断数据对于模型训练的影响程度,然后选择最有影响的这部分数据来进行模型finetune即可。

但是,这里会涉及到几个问题:

  1. 具体定义上的问题,即如何判断数据对于模型训练的影响程度大小;
  2. 对每一个数据都进行反向传播进行判断的话,基本也就等于跑完一个epoch了,这种效率的话就有点舍本逐末了,因此,需要考察一下如何对效率进行优化。

下面,我们就来看一下文中对于这两个问题的处理。

2. 原理说明

首先,我们来看一下文中是如何来定义一条数据对于模型训练影响的大小的。

1. SGD上的定义

首先,文中在SGD上面进行了一下简单的考察,显然,对于一步训练前后,我们可以将其在测试集上的变化一阶泰勒展开得到:

l ( z ′ ; θ t + 1 ) = l ( z ′ ; θ t ) + ⟨ ∇ l ( z ′ ; θ t ) , θ t + 1 − θ t ⟩ l(z'; \theta^{t+1}) = l(z'; \theta^{t}) + \langle \nabla l(z'; \theta^{t}), \theta^{t+1} - \theta^{t} \rangle l(z;θt+1)=l(z;θt)+l(z;θt),θt+1θt

其中,参数的改变量则有可以通过训练过程中的一轮参数迭代过程来表达,即:

θ t + 1 − θ t = − η t ∇ l ( z ; θ t ) \theta^{t+1} - \theta^{t} = -\eta_t \nabla l(z; \theta^t) θt+1θt=ηtl(z;θt)

此时,我们即可得到测试集上一轮迭代测试集上loss的变化大小可以写为:

l ( z ′ ; θ t + 1 ) − l ( z ′ ; θ t ) = − η t ⋅ ⟨ ∇ l ( z ′ ; θ t ) , ∇ l ( z ; θ t ) ⟩ l(z'; \theta^{t+1}) - l(z'; \theta^{t}) = -\eta_t \cdot \langle \nabla l(z'; \theta^{t}), \nabla l(z; \theta^t) \rangle l(z;θt+1)l(z;θt)=ηtl(z;θt),l(z;θt)⟩

因此,我们就可以定义某一条训练数据对于某一条测试数据在N轮训练当中的影响程度如下:

I n f S G D ( z , z ′ ) = ∑ t = 0 N − 1 l ( z ′ ; θ t ) − l ( z ′ ; θ t + 1 ) = ∑ t = 0 N − 1 η t ⋅ ⟨ ∇ l ( z ′ ; θ t ) , ∇ l ( z ; θ t ) ⟩ \begin{aligned} \mathop{Inf}_{SGD} (z, z') &= \sum\limits_{t=0}^{N-1} l(z'; \theta^{t}) - l(z'; \theta^{t+1}) \\ &= \sum\limits_{t=0}^{N-1} \eta_t \cdot \langle \nabla l(z'; \theta^{t}), \nabla l(z; \theta^t) \rangle \end{aligned} InfSGD(z,z)=t=0N1l(z;θt)l(z;θt+1)=t=0N1ηtl(z;θt),l(z;θt)⟩

2. Adam上的定义

但是,在我们当前的训练过程中,我们更常使用的优化器并不是SGD而是Adam,因此,文中对Adam优化器的情况进行了一下调整。

文中首先回顾了一下Adam优化器的计算:

θ t + 1 − θ t = − η t Γ ( z ; θ t ) Γ ( z ; θ t ) = m t + 1 v t + 1 + ϵ m t + 1 = β 1 m t + ( 1 − β 1 ) ∇ l ( z ; θ t ) 1 − β 1 t v t + 1 = β 2 v t + ( 1 − β 2 ) ∇ l ( z ; θ t ) 2 1 − β 2 t \theta^{t+1} - \theta^{t} = -\eta_t \Gamma (z; \theta^t) \\ \Gamma (z; \theta^t) = \frac{m^{t+1}}{\sqrt{v^{t+1} + \epsilon}} \\ m^{t+1} = \frac{\beta_1 m^t + (1-\beta_1) \nabla l(z; \theta^t)}{1-\beta_{1}^{t}} \\ v^{t+1} = \frac{\beta_2 v^t + (1-\beta_2) \nabla l(z; \theta^t)^2}{1-\beta_{2}^{t}} θt+1θt=ηtΓ(z;θt)Γ(z;θt)=vt+1+ϵ mt+1mt+1=1β1tβ1mt+(1β1)l(z;θt)vt+1=1β2tβ2vt+(1β2)l(z;θt)2

因此,我们可以很直接地将influence的定义迁移至Adam优化器上,得到:

I n f A d a m ( z , z ′ ) = ∑ t = 0 N − 1 l ( z ′ ; θ t ) − l ( z ′ ; θ t + 1 ) = ∑ t = 0 N − 1 η t ⋅ ⟨ ∇ l ( z ′ ; θ t ) , Γ ( z ; θ t ) ⟩ \mathop{Inf}_{Adam} (z, z') = \sum\limits_{t=0}^{N-1} l(z'; \theta^{t}) - l(z'; \theta^{t+1}) = \sum\limits_{t=0}^{N-1} \eta_t \cdot \langle \nabla l(z'; \theta^{t}), \Gamma (z; \theta^t) \rangle InfAdam(z,z)=t=0N1l(z;θt)l(z;θt+1)=t=0N1ηtl(z;θt),Γ(z;θt)⟩

不过实际发现模型的参数梯度与文本长度强相关:

在这里插入图片描述

这就导致直接迁移上述定义公式会使得数据选择明显趋于短文本,因此文中对其进行了一下修正,将其加入了一下归一化因子,最终得到定义式如下:

I n f A d a m ( z , z ′ ) = ∑ t = 0 N − 1 η t ⋅ ⟨ ∇ l ( z ′ ; θ t ) , Γ ( z ; θ t ) ⟩ ∥ ∇ l ( z ′ ; θ t ) ∥ ⋅ ∥ Γ ( z ; θ t ) ∥ \mathop{Inf}_{Adam} (z, z') = \sum\limits_{t=0}^{N-1} \eta_t \cdot \frac{\langle \nabla l(z'; \theta^{t}), \Gamma (z; \theta^t) \rangle}{\lVert \nabla l(z'; \theta^{t}) \rVert \cdot \lVert \Gamma (z; \theta^t) \rVert} InfAdam(z,z)=t=0N1ηtl(z;θt)∥Γ(z;θt)∥l(z;θt),Γ(z;θt)⟩

3. 具体实现

1. Overview

有了上述影响程度的定义之后,文中就可以根据上述influence的大小进行数据选择策略了,具体来说的话,就是:

  • 在训练集上进行少量的tuning作为warmup,然后在验证集上计算所有训练数据当中的influence,最后挑选出影响因子最大的数据进行模型训练。

但是,如果直接使用LLM进行warmup然后进行上述定义下的influence计算时,可以想见其计算量必然极其巨大,和我们最终优化训练效率的目的显然是南辕北辙的,因此,我们必须要优化一下这里的计算效率,具体来说的话,文中就是通过引入LoRA的方法减少总的参数量,然后进行数据的选择。

因此,总的pipeline示意图如下:

在这里插入图片描述

下面,我们就来看看LoRA训练和数据选择的具体细节。

1. LoRA使用

首先的话,文中使用了LoRA来进行模型的finetune,这是因为模型本身的参数量太大了,常规的像是Llama这些都至少有着6B左右的参数量,更别说那些更大的模型了,使用全部参数finetune然后反向推导influence显然成本太大了,典型的舍本逐末,因此,这里使用LoRA进行模型的finetune,可以大幅减少模型的计算量。

2. 数据选择

然后,关于数据选择的部分,文中就是使用上述原理说明部分的内容进行数据选择,具体来说的话就是先使用少量训练数据进行一下warmup,然后使用少部分测试集来计算每一条数据对于模型的影响大小,然后选择出影响最大的几条数据即可。

对应的公式如下:

I n f A d a m ( z , D v a l ) = ∑ t = 0 N − 1 η t ⋅ ⟨ ∇ l ( D v a l ; θ t ) , Γ ( z ; θ t ) ⟩ ∥ ∇ l ( D v a l ; θ t ) ∥ ⋅ ∥ Γ ( z ; θ t ) ∥ \mathop{Inf}_{Adam} (z, D_{val}) = \sum\limits_{t=0}^{N-1} \eta_t \cdot \frac{\langle \nabla l(D_{val}; \theta^{t}), \Gamma (z; \theta^t) \rangle}{\lVert \nabla l(D_{val}; \theta^{t}) \rVert \cdot \lVert \Gamma (z; \theta^t) \rVert} InfAdam(z,Dval)=t=0N1ηtl(Dval;θt)∥Γ(z;θt)∥l(Dval;θt),Γ(z;θt)⟩

3. LESS-T

在上述基础上,文中进一步提出,这里的模型可以具有泛化性,也就是说,使用基于模型A选择出来的数据集 D D D同样有利于另一个模型 B B B的训练。

因此,文中给出了一个LESS-T的数据选择方法,固定使用Llama2 7B模型来进行数据选择,然后在其他模型上进行finetune。

3. 实验考察 & 结论

下面,我们来看一下文中给出的具体实验考察以及对应的结果如下。

1. 实验设计

首先,关于文中的实验设计的话,文中主要是使用MMLU, TYDIQA, BBH三个数据集的测试集,其具体信息如下:

在这里插入图片描述

而实验模型的话主要是Llama2 7B, 13B以及Mistral 7B三个模型,数据选择比例的话则是以5%作为标准。

然后,作为对照组的话,主要是以下几种方法:

  • 随机选择
  • BM25
  • DSIR
  • RDS

其中,BM25和DSIR都是基于词频的选择方法,RDS全称为Representationbased
Data Selection,这部分我倒是完全不知道,有兴趣的读者可以去追一下这个文献看看这具体是个啥。

2. 主要结果

下面,我们来看一下文中给出的具体实验结果。

最直接的一个实验结果显然就是在几个数据集下LESS选择的5%的数据和全量数据训练以及随机选择5%数据的效果差异:

在这里插入图片描述

然后,在Llama2 7B模型上,文中进一步考察了不同的数据选择策略下模型finetune效果的差异:

在这里插入图片描述

基于上述两张表格,文中总结了以下几个主要的实验结论:

  1. 从表2可以看到,LESS在不同模型上都有效,方法具有稳定性
  2. 同样从表2可以看到,使用LESS方法有时选择5%的优质数据的训练效果甚至可以超过全量数据finetune的效果;
  3. 同样从表2可以看到,LESS-T方法在Llama2 13B和Mistral 7B模型上同样有效,说明了LESS数据选择对于模型的泛化性
  4. 从表3可以看到,相较于其他对照组中的方法,LESS 是唯一一个在各个任务下均有效的数据选择策略。

3. 细节讨论

此外,文中还更进一步地做了一些关于LESS的细节讨论。

1. 计算复杂度分析

首先,文中分析了一下LESS方法的整体复杂度,得到结果如下:

在这里插入图片描述

可以看到,LESS的计算量其实还是非常大的。

2. warmup是否必要

然后,文中考察了一下对LoRA的warmup是否必要,得到结果如下:

在这里插入图片描述

可以看到,warmup还是非常必要的。

3. checkpoint的影响(N的影响)

此外,关于文中使用多个checkpoint进行梯度的avg这一点,文中同样说明了一下这个操作的必要性:

在这里插入图片描述

4. LoRA Dimension的影响

最后,文中还考察了一下LoRA模型当中维度对于数据选择的影响:

在这里插入图片描述

可以看到,确实维度越大数据选择效果越好,但是小维度的下已经足以选择出很好的数据带来明显的效果提升了。

4. 总结 & 思考

综上就是陈丹琦大佬提出的LESS方法了,可以看到,在数据选择方面LESS确实给出了非常强大的效果,可以在5%左右的数据上就获得非常优秀的效果,而且数据的选择对模型还有任务都有着足够的泛化性。

但是比较困惑我的一点在于LESS的数据选择计算开销实在是非常大,而且是对于已有的训练数据进行二次提纯选择,而现实中我们的问题其实个人感觉还是更多的像是主动学习那样缺少训练数据因此要对未标注数据进行选择标注,这个问题LESS似乎是无法处理的,当然LESS也不是研究的这个问题就是了。

因此个人感觉LESS的定位就多少有些尴尬了,已有足量训练数据的情况下如此大开销地精炼数据是否真的有足够的价值,多少还是有些怀疑。

不过考虑到之前像是Meta在LIMA这篇工作中提到的那样:只需要少量的优质数据,模型就足以finetune获得非常优秀的效果了。

因此,数据质量的价值可能远高于单纯的数据量的价值,数据精炼的意义可能真的会比想象的更大吧,谁知道呢。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816122.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE5 在骨骼动画模型上绘制贴图

参考:Unreal 5.1 - How to paint damage textures and other effects on skeletal meshes 针对模型,在运行状态下通过射线指定一定范围,添加材质效果。 核心思路 通过射线获取命中点,作为材质参数材质中,命中的世界…

DP练习_P1002 [NOIP2002 普及组] 过河卒_python_蓝桥杯

P1002 [NOIP2002 普及组] 过河卒 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 1.DFS做超时40分 n, m, x, y map(int,input().split())flag [[0]*(n10) for _ in range(m10)] maps [[0]*(n10) for _ in range(m10)] d [[2,1],[2,-1],[-2,1],[-2,-1],[1,2],[1,-2],[-1,2]…

matlab 安装 mingw64(6.3.0),OPENEXR

matlab安装openexr 1. matlab版本与对应的mingw版本选择2. mingw(6.3.0)下载地址:3. matlab2020a配置mingw(6.3.0)流程“4. matlab 安装openexr方法一:更新matlab版本方法二:其他博文方法方法三…

【算法刷题 | 二叉树 06】4.10( 路径总和、路径总和 || )

文章目录 13.路径总和13.1问题13.2解法一:递归13.2.1递归思路(1)确定递归函数参数以及返回值(2)确定终止条件(3)确定递归逻辑 13.2.2代码实现 14.路径总和 ||14.1问题14.2解法一:递归…

HarmonyOS鸿蒙端云一体化开发--适合小白体制

端云一体化 什么是“端”,什么是“云”? 答:“端“:手机APP端 “云”:后端服务端 什么是端云一体化? 端云一体化开发支持开发者在 DevEco Studio 内使用一种语言同时完成 HarmonyOS 应用的端侧与云侧开发。 …

探索NDVI:了解植被指数的意义与应用

随着科技的进步和遥感技术的发展,我们能够更深入地了解地球上的植被覆盖情况,而其中一项重要的工具就是NDVI(Normalized Difference Vegetation Index,归一化植被指数)。NDVI不仅仅是一个数值,更是一扇窥探…

Keil开启代码提示功能

本文介绍Keil5开启代码提示功能。 进入这个 如此设置: 有的电脑的左边是空白栏,没有设置选项。应该如何解决呢? 找到MDK525安装包,其他版本的 Keil5 应该也可以。 用你的解压软件把它打开: 解压后会多出这些文…

python之字符串操作

1、切片操作 跟列表的切片很相似 代码示例 str1 chengxianzi996 print(str1[0:2]) print(str1[:10]) 代码解释:第一行:创建了一个字符串对象(其中单引号和双引号都可以创建字符串) 第二行提取前两个字符并输出 第三行输出s…

Linux LVM磁盘扩容

1、查看磁盘情况 df -h df -h2、查看逻辑卷 lvdisplay lvdisplay3、查看逻辑组 vgdisplay vgdisplay4、查看物理卷 pvdisplay pvdisplay5、查看磁盘 fdisk -l fdisk -l6、磁盘分区fdisk /dev/磁盘名 # 上一步查看到的新硬盘路径 fdisk /dev/vdb7、格式化磁盘mkfs -t ext4…

梯度提升树(Gradient Boosting Trees)

通过5个条件判定一件事情是否会发生,5个条件对这件事情是否发生的影响力不同,计算每个条件对这件事情发生的影响力多大,写一个梯度提升树(Gradient Boosting Trees)模型程序,最后打印5个条件分别的影响力。 示例一 梯…

字节对编码 (BPE):提升语言处理的效率和有效性

原文地址:byte-pair-encoding-bpe-bridging-efficiency-and-effectiveness-in-language-processing 2024 年 4 月 12 日 介绍 在快速发展的自然语言处理 (NLP) 领域,对人类语言高效解析和理解的追求带来了重大创新。字节对编码(BPE&#x…

C++ UML 类图介绍与设计

1 类图概述 UML(Unified Modeling Language),即统一建模语言,是用来设计软件的可视化建模语言。它的特点是简单、统一、图形化、能表达软件设计中的动态与静态信息。UML从目标系统的不同角度出发,定义了用例图、类图、对象图、状态图、活动图…

深拷贝总结

JSON.parse(JSON.stringify(obj)) 这行代码的运行过程,就是利用 JSON.stringify 将js对象序列化(JSON字符串),再使用JSON.parse来反序列化(还原)js对象;序列化的作用是存储和传输。&#xff08…

亚马逊云科技官方重磅发布GenAI应用开发学习路线(全免费)

今天小李哥给大家分享的是亚马逊云科技(AWS)最近官方发布的GenAI应用开发最佳学习路线,不仅内容非常全面更主要的是全部免费!大家动动小手就能成为GenAI开发大🐮! 1️⃣这个GenAI开发学习路线包括什么&…

遥感卫星:探索地球的科技之旅

遥感卫星是人类探索地球、理解地球、保护地球的重要工具,其发展历程承载了人类对地球的探索与认知的历程。从最初的概念到如今的高科技应用,遥感卫星技术的发展见证了人类科技的不断进步与创新。 初心萌芽: 遥感卫星的发展始于20世纪中叶&…

C语言高质量编程之assert()和const

目录 编程中常见的错误 assert() const 编程中常见的错误 在编程中我们通常会遇到三种错误形式,分别是:编译型错误,链接型错误,运行时错误。 编译型错误: 在编译阶段发生的错误,绝大多数情况是由语法错误…

利用Sentinel解决雪崩问题(二)隔离和降级

前言: 虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了,不管是线程隔离还是熔断降级,都是对客户端(调…

vue源码解析——v-if和v-for哪个优先级高,如何避免两者同时使用

首先,官方不推荐v-if和v-for在同一个元素上使用。其次,如果两者同时使用,v-if和v-for的优先级怎么确定?在vue2和vue3中这两者的优先级顺序不一样。vue2是v-for优先,条件不存在时也会渲染多个注释节点。在vue3中进行了改…

基于51单片机的无线病床呼叫系统设计—LCD1602显示

基于51单片机的无线病床呼叫系统 (仿真+程序+原理图+设计报告) 功能介绍 具体功能: 1.病人按下按键,LCD1602显示对应的床位号; 2.多人同时呼叫,显示屏同时显示&#xf…

文献阅读:Viv:在 web 上多尺度可视化高分辨率多重生物成像数据

文献介绍 「文献题目」 Viv: multiscale visualization of high-resolution multiplexed bioimaging data on the web 「研究团队」 Nils Gehlenborg(美国哈佛医学院) 「发表时间」 2022-05-11 「发表期刊」 Nature Methods 「影响因子」 47.9 「DOI…