梯度提升树(Gradient Boosting Trees)

通过5个条件判定一件事情是否会发生,5个条件对这件事情是否发生的影响力不同,计算每个条件对这件事情发生的影响力多大,写一个梯度提升树(Gradient Boosting Trees)模型程序,最后打印5个条件分别的影响力。

示例一

梯度提升树(Gradient Boosting Trees)是一个强大的机器学习模型,特别适用于处理非线性关系并估计特征的重要性。以下是一个使用Python和scikit-learn库中的GradientBoostingClassifier来计算每个条件对事件发生的影响力的示例程序。

import numpy as np  
from sklearn.datasets import make_classification  
from sklearn.model_selection import train_test_split  
from sklearn.ensemble import GradientBoostingClassifier  
from sklearn.inspection import permutation_importance  # 生成模拟数据,其中5个特征(条件)影响一个二元目标变量  
X, y = make_classification(n_samples=1000, n_features=5, n_informative=5, n_redundant=0, random_state=42)  # 划分数据集为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 创建梯度提升树分类器  
gb_clf = GradientBoostingClassifier(random_state=42)  # 训练模型  
gb_clf.fit(X_train, y_train)  # 计算特征重要性  
feature_importance = gb_clf.feature_importances_  # 打印5个条件分别的影响力  
for idx, importance in enumerate(feature_importance):  print(f"Condition {idx + 1} influence: {importance}")  # 另外,我们也可以使用排列特征重要性来验证结果  
# 注意:这种方法计算成本较高,因为它需要重新训练模型多次  
def calculate_permutation_importance(estimator, X, y):  result = permutation_importance(estimator, X, y, n_repeats=10, random_state=42, n_jobs=2)  return result.importances_mean  # 计算排列特征重要性  
perm_importance = calculate_permutation_importance(gb_clf, X_test, y_test)  # 打印排列特征重要性的结果  
for idx, perm_imp in enumerate(perm_importance):  print(f"Condition {idx + 1} permutation influence: {perm_imp}")


请注意,上面的代码示例中使用了make_classification函数来生成模拟数据,可能需要替换这部分代码以使用自己的数据集。梯度提升树模型通过feature_importances_属性直接提供了特征重要性,这是训练后模型的一个内置特性。

此外,还包含了使用permutation_importance函数计算排列特征重要性的代码,这是一种更稳健但计算成本更高的方法来估计特征影响力。可以根据需要选择使用哪种方法来评估特征重要性。

请确保已经安装了scikit-learn库,因为上面的代码依赖于它。如果没有安装,可以使用pip install scikit-learn命令来安装。

示例二

为了计算每个条件对一件事情发生的影响力,我们可以使用梯度提升树(Gradient Boosting Trees)模型。梯度提升树是一种强大的机器学习模型,它能够通过组合多个弱学习器(通常是决策树)来创建一个强学习器,并且能够提供特征重要性的度量。

下面是一个使用Python和scikit-learn库中的GradientBoostingClassifier来计算特征重要性的示例程序。在这个示例中,我将生成一个模拟数据集,其中包含5个特征和一个二元目标变量。然后,我将训练梯度提升树模型,并打印出每个特征的重要性。

import numpy as np 
from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import GradientBoostingClassifier # 生成模拟数据集  
X, y = make_classification(n_samples=1000, n_features=5, n_informative=5, n_redundant=0, random_state=42) # 划分数据集为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建梯度提升树分类器  
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=3, random_state=42) # 训练模型  
clf.fit(X_train, y_train) # 计算特征重要性  
feature_importance = clf.feature_importances_ # 打印5个条件分别的影响力  
for idx, importance in enumerate(feature_importance): print(f"Condition {idx + 1} influence: {importance}")

在这个示例中,make_classification函数用于生成模拟数据,其中n_features=5表示有5个条件(特征),n_informative=5表示所有5个特征都是对目标变量有影响的。train_test_split函数用于将数据集划分为训练集和测试集。

GradientBoostingClassifier是梯度提升树分类器的实现,其中n_estimators表示要构建的弱学习器(决策树)的数量,learning_rate是学习率,max_depth是每个决策树的最大深度。

fit方法用于训练模型,而feature_importances_属性包含了训练后每个特征的重要性。最后,通过一个循环打印出每个条件的影响力。

请注意,这个示例使用了模拟数据。在实际应用中,应该使用真实的数据集,并根据需要调整模型的参数。此外,特征重要性是相对的,它们的总和通常为1,但具体的数值可能会因模型参数和数据集的不同而有所变化。

示例三

下面是一个使用梯度提升树(Gradient Boosting Trees)来计算每个条件对一件事情发生的影响力的Python程序示例。在这个示例中,将使用scikit-learn库中的GradientBoostingClassifier来训练模型,并使用模型自带的feature_importances_属性来获取特征重要性。

请注意,这个示例假设已经有一个包含5个特征(条件)和相应标签(事情是否发生)的数据集。

import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import GradientBoostingClassifier 
from sklearn.datasets import make_classification # 生成模拟数据集,X包含5个特征,y是二分类标签  
# 在实际应用中,你应该使用你自己的数据集  
X, y = make_classification(n_samples=1000, n_features=5, n_informative=5, n_redundant=0, random_state=42) # 划分数据集为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建梯度提升树分类器  
gb_clf = GradientBoostingClassifier(random_state=42) # 训练模型  
gb_clf.fit(X_train, y_train) # 获取特征重要性  
feature_importance = gb_clf.feature_importances_ # 打印5个条件分别的影响力  
for idx, importance in enumerate(feature_importance): print(f"Condition {idx + 1} influence: {importance}")

在这个程序中,make_classification函数用于生成一个模拟数据集,其中包含5个特征(条件)和一个二分类标签(事情是否发生)。然后,数据集被划分为训练集和测试集。接下来,创建一个GradientBoostingClassifier实例,并使用训练数据拟合模型。拟合完成后,可以通过feature_importances_属性获取每个特征的重要性,该属性给出了每个特征在模型中的相对重要性。最后,程序遍历这些重要性值并打印出来。

请确保已经安装了scikit-learn库,如果没有安装,可以使用pip install scikit-learn命令来安装。

如果使用的是自己的数据集,应该将make_classification生成的模拟数据替换为自己的数据。在实际应用中,可能还需要对数据进行预处理,比如缺失值填充、特征缩放等。此外,可能还需要调整梯度提升树分类器的参数以获得最佳性能。

示例四

梯度提升树(Gradient Boosting Trees)是一个强大的机器学习模型,它通过组合多个决策树来创建一个强学习器。在Python中,我们可以使用scikit-learn库中的GradientBoostingClassifier来实现这个模型,并通过feature_importances_属性来获取每个特征(条件)的影响力。

下面是一个示例程序,演示如何使用梯度提升树模型计算5个条件对一件事情发生的影响力,并打印出来:

import numpy as np 
from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import GradientBoostingClassifier # 创建一个模拟数据集,其中5个特征(条件)影响一个二元目标变量  
X, y = make_classification(n_samples=1000, n_features=5, n_informative=5, n_redundant=0, random_state=42) # 将数据集分割为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建梯度提升树分类器  
gb_clf = GradientBoostingClassifier(random_state=42) # 训练模型  
gb_clf.fit(X_train, y_train) # 获取特征重要性  
feature_importance = gb_clf.feature_importances_ # 打印每个条件的影响力  
for idx, importance in enumerate(feature_importance): print(f"Condition {idx + 1} influence: {importance}")

在这个示例中,我们首先使用make_classification函数生成一个模拟数据集,其中包含5个特征(条件)和一个二元目标变量。然后,我们将数据集分割为训练集和测试集,并创建一个GradientBoostingClassifier对象。通过调用fit方法训练模型后,我们可以使用feature_importances_属性来获取每个特征的重要性。最后,我们遍历这些重要性并打印出来。

请注意,feature_importances_属性提供的是归一化的重要性分数,它们的总和为1,并且分数越高表示该特征对模型预测的贡献越大。这些分数可以帮助我们理解哪些条件对事情是否发生具有最大的影响力。

示例五

下面是一个使用梯度提升树(Gradient Boosting Trees)来计算每个条件对事件发生影响力的Python程序示例。在这个示例中,将使用scikit-learn库中的GradientBoostingClassifier来训练模型,并使用模型的feature_importances_属性来获取特征重要性。

请注意,这个例子假设已经有了包含5个条件和对应事件标签的数据集。如果没有数据集,可以使用make_classification函数(如之前示例所示)来生成模拟数据。

import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import GradientBoostingClassifier 
from sklearn.datasets import load_iris # 这里只是为了演示,实际应该用你的数据集  
from sklearn.datasets import make_classification # 加载数据集,这里使用Iris数据集作为示例,但你应该使用你自己的数据  
# Iris数据集包含3类鸢尾花和4个特征,这里我们只使用前5个样本和两个特征作为示例  
iris = load_iris() 
X, y = iris.data[:5, :2], iris.target[:5] # 这里仅用于演示,实际数据应该更完整  # 由于我们的数据集太小,这里我们创建一个合成数据集  
# 真实情况下,你应该有足够的数据来进行训练  
X, y = make_classification(n_samples=1000, n_features=5, n_informative=5, n_redundant=0, random_state=42) # 划分数据集为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建梯度提升树分类器  
clf = GradientBoostingClassifier(random_state=42) # 训练模型  
clf.fit(X_train, y_train) # 获取特征重要性  
feature_importance = clf.feature_importances_ # 打印5个条件分别的影响力  
for idx, importance in enumerate(feature_importance): print(f"Condition {idx + 1} influence: {importance}")

在这个示例中,首先加载了一个数据集(这里使用了Iris数据集的前几个样本和两个特征,但这不是一个好的实践,因为数据集太小且特征被截断)。然后,划分了数据集为训练集和测试集,并创建了一个GradientBoostingClassifier对象。接着,训练了模型,并使用feature_importances_属性来获取每个特征的重要性。最后,打印出了每个条件(特征)对事件发生的影响力。

请确保已经安装了scikit-learn库,因为上面的代码依赖于它。如果没有安装,可以使用pip install scikit-learn命令来安装。

另外,请注意,这个示例中的数据集和模型参数都是随意选择的,需要根据实际数据和问题来调整它们。特别是,可能需要调整GradientBoostingClassifier的参数以获得最佳性能,并使用完整的数据集来训练模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816110.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

字节对编码 (BPE):提升语言处理的效率和有效性

原文地址:byte-pair-encoding-bpe-bridging-efficiency-and-effectiveness-in-language-processing 2024 年 4 月 12 日 介绍 在快速发展的自然语言处理 (NLP) 领域,对人类语言高效解析和理解的追求带来了重大创新。字节对编码(BPE&#x…

C++ UML 类图介绍与设计

1 类图概述 UML(Unified Modeling Language),即统一建模语言,是用来设计软件的可视化建模语言。它的特点是简单、统一、图形化、能表达软件设计中的动态与静态信息。UML从目标系统的不同角度出发,定义了用例图、类图、对象图、状态图、活动图…

深拷贝总结

JSON.parse(JSON.stringify(obj)) 这行代码的运行过程,就是利用 JSON.stringify 将js对象序列化(JSON字符串),再使用JSON.parse来反序列化(还原)js对象;序列化的作用是存储和传输。&#xff08…

亚马逊云科技官方重磅发布GenAI应用开发学习路线(全免费)

今天小李哥给大家分享的是亚马逊云科技(AWS)最近官方发布的GenAI应用开发最佳学习路线,不仅内容非常全面更主要的是全部免费!大家动动小手就能成为GenAI开发大🐮! 1️⃣这个GenAI开发学习路线包括什么&…

遥感卫星:探索地球的科技之旅

遥感卫星是人类探索地球、理解地球、保护地球的重要工具,其发展历程承载了人类对地球的探索与认知的历程。从最初的概念到如今的高科技应用,遥感卫星技术的发展见证了人类科技的不断进步与创新。 初心萌芽: 遥感卫星的发展始于20世纪中叶&…

C语言高质量编程之assert()和const

目录 编程中常见的错误 assert() const 编程中常见的错误 在编程中我们通常会遇到三种错误形式,分别是:编译型错误,链接型错误,运行时错误。 编译型错误: 在编译阶段发生的错误,绝大多数情况是由语法错误…

利用Sentinel解决雪崩问题(二)隔离和降级

前言: 虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了,不管是线程隔离还是熔断降级,都是对客户端(调…

vue源码解析——v-if和v-for哪个优先级高,如何避免两者同时使用

首先,官方不推荐v-if和v-for在同一个元素上使用。其次,如果两者同时使用,v-if和v-for的优先级怎么确定?在vue2和vue3中这两者的优先级顺序不一样。vue2是v-for优先,条件不存在时也会渲染多个注释节点。在vue3中进行了改…

基于51单片机的无线病床呼叫系统设计—LCD1602显示

基于51单片机的无线病床呼叫系统 (仿真+程序+原理图+设计报告) 功能介绍 具体功能: 1.病人按下按键,LCD1602显示对应的床位号; 2.多人同时呼叫,显示屏同时显示&#xf…

文献阅读:Viv:在 web 上多尺度可视化高分辨率多重生物成像数据

文献介绍 「文献题目」 Viv: multiscale visualization of high-resolution multiplexed bioimaging data on the web 「研究团队」 Nils Gehlenborg(美国哈佛医学院) 「发表时间」 2022-05-11 「发表期刊」 Nature Methods 「影响因子」 47.9 「DOI…

第17天:信息打点-语言框架开发组件FastJsonShiroLog4jSpringBoot等

第十七天 本课意义 1.CMS识别到后期漏洞利用和代码审计 2.开发框架识别到后期漏洞利用和代码审计 3.开发组件识别到后期漏洞利用和代码审计 一、CMS指纹识别-不出网程序识别 1.概念 CMS指纹识别一般能识别到的都是以PHP语言开发的网页为主,其他语言开发的网页识…

Unix环境高级编程-学习-09-多线程之读写锁与条件变量(包含线程池的部分实现与测试验证)

目录 一、多线程相关文章链接 二、自由抒发 1、读写锁 2、条件变量 三、函数介绍 1、pthread_rwlock_init (1)声明 (2)作用 (3)参数 (4)返回值 (5)…

深度学习学习日记4.14 数据增强 Unet网络部分

数据增强 transforms.Compose([:这表示创建一个转换组合,将多个数据转换操作串联在一起 transforms.RandomHorizontalFlip():这个操作是随机水平翻转图像,以增加数据的多样性。它以一定的概率随机地水平翻转输入的图像。 transfo…

29、链表-删除链表的倒数第N个结点

思路: 首先找到倒数第N个结点 第一种方式 先统计链表的节点数,然后再次遍历len-N即可得到倒数第N个结点,然后将前一个节点的next指针指向next的下一个节点使用快慢指针,快指针先跑N个结点然后慢指针开始跑,等快指针到达尾节点后…

多因子模型的因子选取

经典的Alpha模型是一些多因子模型,用于预测Alpha模型的信息比率,从而来判断判断模型的好坏。这里我们所说的信息比率是相对收益率除以非系统性风险,所以当我们在进行因子选择的时候,我们一定不能选取系统性风险模型(例…

免费VPS云服务器汇总,最长永久免费使用

目前云服务器市场竞争很激烈,为了方便吸引上云,很多云计算服务商提供免费试用云服务器,下面给大家整理汇总一下免费VPS云服务器,最长永久免费使用! 一、雨云(优惠码:ABC) 活动地址:…

2D AI交互数字人:赋能文旅、金融、政务、教育行业数字化转型

AI交互数字人结合了语音合成、语音识别、语义理解、图像处理、机器翻译、虚拟形象驱动等多项AI核心技术,可以提供服务导览、业务咨询、语音互动交流、信息播报等智能服务。 其中,2D AI交互数字人是采集真人视频,通过AI训练,生成逼…

认识OpenEuler操作系统

引言 在信息技术日新月异的时代,开源软件已成驱动创新的核心动能,其中,OpenEuler作为一款冉冉升起的开源操作系统典范,凭借其对开源精神的坚守与技术创新的不懈追求,自亮相以来便引发了全球关注。本文将全方位深挖Open…

Xcode 15.0 新 #Preview 预览让 SwiftUI 界面调试更加悠然自得

概览 从 Xcode 15 开始,苹果推出了新的 #Preview 宏预览机制,它无论从语法还是灵活性上都远远超过之前的预览方式。#Preview 不但可以实时预览 SwiftUI 视图,而且对 UIKit 的界面预览也是信手拈来。 想学习新 #Preview 预览的一些超实用调试…

使用新一代一站式 AI Bot 开发平台扣子coze,搭建我的第一个AI Bot(前端魔法师) ,

目录 1.概述​ 2.功能与优势 3.使用扣子 4.人设与回复逻辑 5.添加插件 6.预览与调试 7.发布bot Store 8.环境大家体验(给大家内置了比较屌的插件) 9.推荐阅读: 1.概述​ 扣子是新一代一站式 AI Bot 开发平台。无论你是否有编程基础…