DMA的认识

DMA介绍

Q:什么是DMA

DMA( Direct Memory Access,直接存储器访问 ) 提供在 外设与内存 存储器和存储器 外设
与外设 之间的 高速数据传输 使用。它允许不同速度的硬件装置来沟通,而不需要依赖于
CPU ,在这个时间中, CPU 对于内存的工作来说就无法使用。
简单描述:
就是一个 数据搬运工 !!

DMA的意义

代替 CPU 搬运数据,为 CPU 减负。
1. 数据搬运的工作比较耗时间;
2. 数据搬运工作时效要求高(有数据来就要搬走);
3. 没啥技术含量( CPU 节约出来的时间可以处理更重要的事)。

 搬运什么数据?

存储器、外设

这里的外设指的是 spi usart iic adc 等基于 APB1 APB2 AHB 时钟的外设,而这里的存储器包括自身的闪存(flash) 或者内存 (SRAM) 以及外设的存储设备都可以作为访问地源或者目的。
三种搬运方式:
  • 存储器存储器(例如:复制某特别大的数据buf
  • 存储器外设 (例如:将某数据buf写入串口TDR寄存器)
  • 外设存储器 (例如:将串口RDR寄存器写入某数据buf

 存储器存储器

存储器→外设

外设→存储器

DMA的意义

代替 CPU 搬运数据,为 CPU 减负

1. 数据搬运的工作比较耗时间;

2. 数据搬运工作时效要求高(有数据来就要搬走);

3. 没啥技术含量(CPU 节约出来的时间可以处理更重要的事)。

DMA 控制器

STM32F103有2个 DMA 控制器DMA1有7个通道DMA2有5个通道

一个通道每次只能搬运一个外设的数据!! 如果同时有多个外设的 DMA 请求,则按照优先级进 行响应。

DMA的通道优先级

优先级管理采用软件+硬件

软件: 每个通道的优先级可以在DMA_CCRx寄存器中设置,有4个等级 最高级>高级>中级>低级

硬件: 如果2个请求,它们的软件优先级相同较低编号的通道比较高编号的通道有较高的优先权

DMA传输方式

DMA_Mode_Normal(正常模式)

一次DMA数据传输完后,停止DMA传送 ,也就是只传输一次

DMA_Mode_Circular(循环传输模式)

当传输结束时,硬件自动会将传输数据量寄存器进行重装,进行下一轮的数据传输。 也就是多次传输模式

指针递增模式

外设和存储器指针在每次传输后可以自动向后递增或保持常量。当设置为增量模式时,下一个要 传输的地址将是前一个地址加上增量值。

这里有两种情况:

第一种情况,每次传输之后,源和目标都需要指针移位:

第二种情况,每次传输之后,源需要指针移位而目标不需要(源数据发送给目标地址后,目标地址输出到外设上),比如目标是串口发送/接收寄存器时:

实验1 从内存到内存的搬运

需求

使用DMA的方式将数组A的内容复制到数组B中,搬运完之后将数组B的内容打印到屏幕

使用到的库函数

1. HAL_DMA_Start

HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)

参数一:DMA_HandleTypeDef *hdma,DMA通道句柄

参数二:uint32_t SrcAddress,源内存地址

参数三:uint32_t DstAddress,目标内存地址

参数四:uint32_t DataLength,传输数据长度。注意:需要乘以sizeof(uint32_t)

返回值:HAL_StatusTypeDef,HAL状态(OK,busy,ERROR,TIMEOUT) 

 

2.  __HAL_DMA_GET_FLAG

#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__) (DMA1->ISR & (__FLAG__))

参数一:HANDLE,DMA通道句柄

参数二:FLAG,数据传输标志DMA_FLAG_TCx表示数据传输完成标志

返回值:FLAG的值(SET/RESET) 

 CubeMx

1.常规配置

SYS->Debug->Serial Wire

RCC->High Speed Clock(HSE)->Crystal/Ceramic Resonator

时钟树HSE、PLLCLK打开,HCLK设置成72MHz、

2.

3.创建代码

Keil

1. 打开Micro-LIB

2.程序代码

  • 1. 开启数据传输
  • 2. 等待数据传输完成
  • 3. 打印数组内容
#include "stdio.h"#define SIZE 16uint32_t srcBuff[SIZE] = {
0x00000000,0x11111111,0x22222222,0x33333333,
0x44444444,0x55555555,0x66666666,0x77777777,
0x88888888,0x99999999,0xAAAAAAAA,0xBBBBBBBB,
0xCCCCCCCC,0xDDDDDDDD,0xEEEEEEEE,0xFFFFFFFF
}; // 源数组,每个元素4个字节,32位uint32_t desBuff[SIZE]; //目标数组int fputc(int ch, FILE *f)
{unsigned char temp[1]={ch};HAL_UART_Transmit(&huart1,temp,1,0xffff);return ch;
}int main(void)
{HAL_DMA_Start(&hdma_memtomem_dma1_channel1, (uint32_t)srcBuff, (uint32_t)desBuff,sizeof(uint32_t)*SIZE); // 开启数据传输 其实srcBfuf和desBuff已经是这个类型了,但是还是需要强转来消除警告while(__HAL_DMA_GET_FLAG(&hdma_memtomem_dma1_channel1, DMA_FLAG_TC1) == RESET); // 等待数据传输完成for (i = 0; i < SIZE; i++){ // 打印数组内容printf("Buff[%d] = %X\r\n", i, desBuff[i]);}while (1){}}

uint32_t 在大多数系统中占据 4 个字节(32 位)。由于在 C 和 C++ 中,一个字节被定义为 8 位,因此 uint32_t 类型占据了 4 个字节,即 32 位。

使用 uint32_t 作为DMA传输的源数组和目标数组的类型是基于特定的需求和硬件约束。

DMA(Direct Memory Access,直接内存访问)是计算机系统中的一种数据传输技术,它允许外设(如网络适配器、磁盘控制器等)直接和系统内存进行数据传输,而不需要CPU的干预。为了实现高效的DMA传输,源数组和目标数组的类型需要满足以下要求:

  1. 内存对齐:许多DMA控制器要求数据在内存中按特定的方式对齐,通常是按字节对齐或者按特定的字节宽度对齐。uint32_t 类型通常是32位宽度,可以满足大多数DMA控制器对于内存对齐的要求。

  2. 数据宽度:DMA传输通常是按字节、半字(16位)或全字(32位)进行的。使用 uint32_t 类型作为源数组和目标数组的类型,可以保证传输的数据宽度与DMA控制器的要求相匹配,从而实现高效的数据传输。

  3. 数据表示范围:如果源数据或目标数据的取值范围超过了 uint32_t 类型所能表示的范围,那么使用 uint32_t 类型可能会导致数据截断或溢出。因此,在选择数据类型时,需要确保数据的表示范围不会超过 uint32_t 类型的范围。

需要注意的是,具体使用哪种数据类型作为源数组和目标数组的类型取决于DMA控制器和所用硬件的要求。在实际应用中,应该仔细查阅相关的硬件文档和编程手册,以确定正确的数据类型。

实验结果

 

实验2 从内存到外设的搬运

需求

使用DMA的方式将内存数据搬运到串口1发送寄存器,同时闪烁LED1。

使用到的库函数

HAL_UART_Transmit_DMA

HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)

参数一:UART_HandleTypeDef *huart,串口句柄

参数二:uint8_t *pData,待发送数据首地址

参数三:uint16_t Size,待发送数据长度

返回值:HAL_StatusTypeDef,HAL状态(OK,busy,ERROR,TIMEOUT)

CubeMX

1.常规配置

SYS->Debug->Serial Wire

RCC->High Speed Clock(HSE)->Crystal/Ceramic Resonator

时钟树HSE、PLLCLK打开,HCLK设置成72MHz

打开LED的GPIO PB8

打开uart1

2.选择左侧的DMA,然后这次就在右侧出现的DMA侧,在左下角选择ADD,然后选择USART1_TX

 2.1 再上图下方依然可以设置模式是否指针偏移数据宽度,可见,外设不需要指针偏移,因为一直指向串口的发送寄存器 (上述传输数据第二种情况)

3.创建工程,生成代码

Keil

#define SIZE 1000//待发送数据
uint8_t sendBuff[SIZE] = {0};int main(void)
{int i = 0;// 准备数据for(i = 0; i<SIZE;i++){sendBuff[i] = 'a';}//将数据通过串口DMA发送HAL_UART_Transmit_DMA(&huart1,sendBuff,SIZE);while (1){HAL_GPIO_TogglePin(GPIOB,GPIO_PIN_8);HAL_Delay(100);}
}
实现效果

串口助手中:

 

可见,成功收到了由内存搬运来的1000个A(如果想让串口一直发送数据,则在CubeMx设置DMA为circular模式)即可

同时,单片机上的LED不断闪烁,从软件层面来理解就是,“数据发送到串口” 这一个数据搬运的动作不再由CPU负责(CPU负责闪烁LED1),而是由DMA负责

实验3 从外设到内存的搬运

需求

使用DMA的方式将串口接收缓存寄存器的值搬运到内存中,同时闪烁LED1。

使用到的库函数

__HAL_UART_ENABLE_IT //开启串口的空闲IDLE中断

参数一:HANDLE,串口句柄

参数二:INTERRUPT,需要使能的中断

返回值:无 

2. HAL_UART_Receive_DMA //使能DMA的接收中断

HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)

参数一:UART_HandleTypeDef *huart,串口句柄

参数二:uint8_t *pData,接收缓存首地址

参数三:uint16_t Size,接收缓存长度

返回值:HAL_StatusTypeDef,HAL状态(OK,busy,ERROR,TIMEOUT)

3. __HAL_UART_GET_FLAG //获取串口Flag

#define __HAL_UART_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))

参数一:HANDLE,串口句柄

参数二:FLAG,需要查看的FLAG

返回值:FLAG的值 

4. __HAL_UART_CLEAR_IDLEFLAG //清除串口Flag

#define __HAL_UART_CLEAR_IDLEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)

参数一:HANDLE,串口句柄

返回值:无 

5. HAL_UART_DMAStop //关闭DMA

HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)

参数一:UART_HandleTypeDef *huart,串口句柄

返回值:HAL_StatusTypeDef,HAL状态(OK,busy,ERROR,TIMEOUT) 

6. __HAL_DMA_GET_COUNTER //获取未传输的数据的大小

#define __HAL_DMA_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNDTR)

参数一:HANDLE,串口句柄

返回值:未传输数据大小

CubeMX

1.常规配置

SYS->Debug->Serial Wire

RCC->High Speed Clock(HSE)->Crystal/Ceramic Resonator

时钟树HSE、PLLCLK打开,HCLK设置成72MHz

打开LED的GPIO PB8

打开uart1

2. 选择左侧的DMA,然后这次就在右侧出现的DMA侧,在左下角选择ADD,然后选择USART1_RX 和 USART1_TX

依然要开启 USART1_TX 的原因是:本次实验是从外设(串口)搬运数据到内存,但是我不知道我有没有成功把数据搬到内存,所以还需要再使用上个实验的方法,把内存的数据再搬回串口,以查看程序是否正确运行!

 2.1  再上图下方依然可以设置模式是否指针偏移数据宽度,可见,外设不需要指针偏移,因为一直指向串口的发送寄存器

2.2 此时打开NVIC设置,可以看到,DMA的中断已经自动打开了,在程序中只需要使能一下就可以使用:

3.生成代码

Keil

如何判断串口接收是否完成?如何知道串口收到数据的长度?

使用串口空闲中断(IDLE)!

串口空闲时,触发空闲中断;空闲中断标志位由硬件置1,软件清零

利用串口空闲中断,可以用如下流程实现DMA控制的任意长数据接收:

1. 使能IDLE空闲中断;

2. 使能DMA接收中断;

3. 收到串口接收中断,DMA不断传输数据到缓冲区;

4. 一帧数据接收完毕,串口暂时空闲,触发串口空闲中断;

5. 在中断服务函数中,清除中断标志位,关闭DMA传输(防止干扰);

6. 计算刚才收到了多少个字节的数据。

7. 处理缓冲区数据,开启DMA传输,开始下一帧接收。

 main.c

uint8_t rcvBuff[SIZE] = {0};//接收数据缓存数组
uint8_t rcvLen = 0;				//接收一帧数据的长度int main(void)
{__HAL_UART_ENABLE_IT(&huart1,UART_IT_IDLE);  //使能IDLE空闲中断HAL_UART_Receive_DMA(&huart1,rcvBuff,SIZE);//使能DMA接收中断while (1){HAL_GPIO_TogglePin(GPIOB,GPIO_PIN_8);HAL_Delay(100);}}

main.h

#define SIZE 100

stm32f1xx_it.c

extern uint8_t rcvBuff[SIZE];//接收数据缓存数组
extern uint8_t rcvLen;				//接收一帧数据的长度void USART1_IRQHandler(void)
{if((__HAL_UART_GET_FLAG(&huart1,UART_FLAG_IDLE) == SET)){		//判断IDLE标志位__HAL_UART_CLEAR_IDLEFLAG(&huart1);  //清除IDLE标志位HAL_UART_DMAStop(&huart1);          //停止DMA传输,防止干扰uint8_t temp = __HAL_DMA_GET_COUNTER(&hdma_usart1_rx);rcvLen = SIZE - temp;//计算数据长度HAL_UART_Transmit_DMA(&huart1,rcvBuff,rcvLen);//通过DMA发送数据HAL_UART_Receive_DMA(&huart1,rcvBuff,SIZE);//开启DMA传输,开始下一帧接收}
}

为什么要把代码写在 USART1_IRQHandler() 中,而不像之前那样继续跳转找到 HAL_UART_RxCpltCallback 接收中断回调函数并在main.c中重写呢?

参考产品手册P538:

可见,能触发串口中断的事件有很多,其中就有“检测到空闲线路”这个事件,也就是串口的空闲中断,问题在于:HAL库中没有封装针对串口空闲中断的回调函数!

反观之前串口的流程图:(走的是接收数据就绪完成)

所有串口中断,只要使能之后,一旦发生对应事件触发中断,就会进入中断处理函数,然后进入HAL库的中断处理函数,在HAL库的中断处理函数中判断是什么中断从而跳转到对应的回调函数,对于上图来说,发生的是接收完成的中断,因此会调用接收完成的回调函数,但是由于HAL库没有封装空闲中断的回调函数,所以肯定不能把对应代码写在接收完成回调函数里!

解决方式1:简单粗暴,既然所有中断都会进入最开始的中断处理函数,且现在中断触发后要执行的代码也不是很复杂,那就可以直接把代码写在void USART1_IRQHandler()

解决方式2:自己手动完善HAL库,添加空闲中断的回调函数,这样就可以和之前一样在main函数中重写,并把代码写在main函数重写过的回调函数里了stm32: 串口空闲中断的实现(HAL库)_为什么设备一上电就会产生一个空闲中断-CSDN博客

实现效果

在串口助手中:

发送233333,会收到发回的233333,说明DMA成功将数据从外设搬到了内存,并又搬回了外设

同时,依然可以看到LED1在不停的闪烁。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/812006.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法打卡day34

今日任务&#xff1a; 1&#xff09;62.不同路径 2&#xff09;63.不同路径 II 3&#xff09;复习day10 62.不同路径 题目链接&#xff1a;62. 不同路径 - 力扣&#xff08;LeetCode&#xff09; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “S…

数据中心的网络架构设计,打造高效、安全的数字底座

数据中心的网络架构设计 一、数据中心网络架构设计原则 网络,作为数据中心的核心支柱,其结构精妙,由众多二层接入设备与少量三层设备共同编织而成。过去,数据中心网络规模有限,仅凭数十台设备的简单互连便能实现信息的畅通无阻。然而,随着技术与应用需求的飞速增长,数据…

Missing artifact org.opencv:opencv:jar:4.10.0 [opencv-4.10.0.jar]

Missing artifact org.opencv:opencv:jar:4.10.0 [opencv-4.10.0.jar] https://mvnrepository.com/artifact/org.opencv/opencv 根本就没有 找了个旧项目的opencv-410.jar修改下opencv-4.10.0.jar放到目录下面就好了 D:\localRepository\org\opencv\opencv\4.10.0 OpenCV-C…

[HDFS 相关Shell命令]

目录 HDFS 相关Shell命令: 相关文件操作命令: HDFS 相关Shell命令: 注意&#xff0c;下述命令中的<path>代表文件或目录的路径&#xff0c;<local_path>代表本地文件系统的路径&#xff0c;而<hdfs_path>代表HDFS上的路径。使用这些命令时&#xff0c;需要…

类的六个默认成员函数(上)

目录 构造函数 析构函数 拷贝构造函数 对于日期&#xff08;Date&#xff09;类&#xff0c;可以通过 Init 公有方法给对象设置日期&#xff0c;但如果每次创建对象时都调用该方法设置信息&#xff0c;未免有点麻烦&#xff0c;那能否在对象创建时&#xff0c;就将信息设置进…

鸿蒙OS开发学习:【第三方库调用】

介绍 本篇Codelab主要向开发者展示了在Stage模型中&#xff0c;如何调用已经上架到[三方库中心]的社区库和项目内创建的本地库。效果图如下&#xff1a; 相关概念 [Navigation]&#xff1a;一般作为Page页面的根容器&#xff0c;通过属性设置来展示页面的标题、工具栏、菜单。…

政安晨:【Keras机器学习实践要点】(二十七)—— 使用感知器进行图像分类

目录 简介 设置 准备数据 配置超参数 使用数据增强 实施前馈网络&#xff08;FFN&#xff09; 将创建修补程序作为一个层 实施补丁编码层 建立感知器模型 变换器模块 感知器模型 编译、培训和评估模式 政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍…

Spring Boot集成Graphql快速入门Demo

1.Graphql介绍 GraphQL 是一个用于 API 的查询语言&#xff0c;是一个使用基于类型系统来执行查询的服务端运行时&#xff08;类型系统由你的数据定义&#xff09;。GraphQL 并没有和任何特定数据库或者存储引擎绑定&#xff0c;而是依靠你现有的代码和数据支撑。 优势 GraphQL…

npm install 报 ERESOLVE unable to resolve dependency tree 异常解决方法

问题 在安装项目依赖时&#xff0c;很大可能会遇到安装不成功的问题&#xff0c;其中有一个很大的原因&#xff0c;可能就是因为你的npm版本导致的。 1.npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree 2.ERESOLVE unable to resolve dependenc…

【C++之queue的应用及模拟实现】

C学习笔记---014 C之queue的应用及模拟实现1、queue的简单介绍2、queue的简单接口应用3、queue的模拟实现3.1、queue的结构一般的构建3.2、queue的适配器模式构建3.3、queue的主要接口函数 4、queue的模拟实现完整代码4.1、一般方式4.2、泛型模式 5、queue巩固练习题5.1、最小栈…

VSCode中 task.json 和 launch.json 的作用和参数解释以及配置教程

前言 由于 VS Code 并不是一个传统意义上的 IDE&#xff0c;所以初学者可能在使用过程中会有很多的疑惑&#xff0c;其中比较常见的一个问题就是 tasks.json和 launch.json两个文件分别有什么作用以及如何配置 tasks.json VSCode 官网提供的 tasks.json 配置教程 使用不同的…

UE4_导入内容_Alembic文件导入器

Alembic文件导入器 Alembic文件格式(.abc)是一个开放的计算机图形交换框架&#xff0c;它将复杂的动画化场景浓缩成一组非过程式的、与应用程序无关的烘焙几何结果。虚幻引擎4(UE4)允许你通过 Alembic导入器 导入你的Alembic文件&#xff0c;这让你可以在外部自由地创建复杂的…

什么是态势感知?

什么是态势感知&#xff1f; 同学&#xff0c;听说过态势感知吗&#xff1f;啥&#xff1f;不知道&#xff1f;不知道很正常&#xff0c;因为态势感知是一个比较小众、比较神秘的概念。为什么态势感知很神秘&#xff0c;首先是因为这是来自军事情报领域的概念&#xff0c;然后…

008Node.js模块、自定义模块和CommonJs

CommonJS API定义很多普通应用程序(主要指非浏览器的应用)使用的API&#xff0c;从而填补了这个空白。它的终极目标是提供一个类似Python&#xff0c;Ruby和Java标 准库。这样的话&#xff0c;开发者可以使用CommonJS API编写应用程序&#xff0c;然后这些应用可以运行在不同的…

【尝试】域名验证:配置github二级目录下的txt文件

【尝试】域名验证&#xff1a;配置github二级目录下的txt文件 写在最前面一、初始化本地仓库二、设置远程仓库1. 远程仓库 URL 没有设置或设置错误添加远程仓库修改远程仓库 2. 访问权限问题3. 仓库不存在步骤 1: 在你的仓库中添加文件步骤 2: 确认GitHub Pages设置步骤 3: 访问…

lua学习笔记21完结篇(lua中的垃圾回收)

print("*****************************lua中的垃圾回收*******************************") text{id24,name"仙贝"} --垃圾回收关键字collectgarbag --获取当前lua占用内存数 k字节 返回值*1024就可以得到具体占用字节数 print(collectgarbage("count&…

本地部署开源免费文件传输工具LocalSend并实现公网快速传送文件

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-X4xB3gSR3z2VUfmN {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

C++项目——集群聊天服务器项目(十四)客户端业务

大家好~前段时间有些事情需要处理&#xff0c;没来得及更新&#xff0c;实在不好意思。 今天来继续更新集群聊天服务器项目的客户端功能&#xff0c;主要实现客户端业务&#xff0c;包括添加好友、点对点聊天、创建群组、添加群组、群组聊天业务&#xff0c;接下来我们一起来敲…

Prompt 工程技术提问的艺术,如何向 ChatGPT 提问?

Prompt 工程技术简介 什么是 Prompt 工程&#xff1f; Prompt 工程是创建提示或指导像 ChatGPT 这样的语言模型输出的过程。它允许用户控制模型的输出并 生成符合其特定需求的文本。ChatGPT 是一种先进的语言模型&#xff0c;能够生成类似于人类的文本。它建立在 Transformer 架…

FPGA基于VCU的H265视频解压缩,解码后HDMI2.0输出,支持4K60帧,提供工程源码+开发板+技术支持

目录 1、前言免责声明 2、相关方案推荐我这里已有的视频图像编解码方案4K60帧HDMI2.0输入&#xff0c;H265视频压缩方案 3、详细设计方案设计框图FPGA开发板解压视频源Zynq UltraScale VCUVideo Frame Buffer ReadVideo MixerHDMI 1.4/2.0 Transmitter SubsystemVideo PHY Cont…