因为有一批数据有点儿小,数据质量不佳,为了标注方便使用数据增强将数据固定在1080P,方便标注,
# -*- coding: UTF-8 -*-
"""
@Project :yolov5_relu_fire_smoke_v1.4
@IDE :PyCharm
@Author :沐枫
@Date :2024/4/2 20:28添加白条,做数据增强,最后所有的图片尺寸固定在1080P
"""
import os
import multiprocessing
from concurrent import futures
from copy import deepcopyimport cv2
import numpy as np
import xml.etree.ElementTree as ET
import xml.dom.minidom as minidomdef xyxy2xywh(x):"""Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right:param x::return:"""y = np.copy(x)y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x centery[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y centery[..., 2] = x[..., 2] - x[..., 0] # widthy[..., 3] = x[..., 3] - x[..., 1] # heightreturn ydef xywh2xyxy(x: np.ndarray):"""Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right:param x::return:"""y = np.copy(x)y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left xy[..., 1] = x[..., 1] - x[..., 3] / 2 # top left yy[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right xy[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right yreturn ydef decodeVocAnnotation(voc_xml_path, class_index_dict):"""voc数据集格式的文件解析,将一个文件解析成一个list,使用空格间隔不同对象注意:返回的类别不是整型,而是字符串的类别名称注意判断返回值是否为 空,如果是空说明没有目标,是一张背景图:param voc_xml_path: xml路径:param class_index_dict: 类别字典:return: [(cls_index, x1, y1, x2, y2), ...]"""assert voc_xml_path.endswith(".xml"), "voc_xml_path must endswith .xml"with open(voc_xml_path, 'r', encoding='utf-8') as xml_file:# 打开xml文件,并返回根节点root = ET.ElementTree().parse(xml_file)# 定义一个列表,专门保存目标information = []# 查找root节点下所有目标信息for obj in root.iter('object'):# 目标的名称name = obj.find('name').text# 目标的bbox坐标,一般voc是保存的corner格式的bboxbox = obj.find('bndbox')xmin = box.find('xmin').textymin = box.find('ymin').textxmax = box.find('xmax').textymax = box.find('ymax').text# 添加一个目标的信息# NOTE:返回值的listinformation.append((class_index_dict[name], int(xmin), int(ymin), int(xmax), int(ymax)))return informationdef create_voc_xml(image_folder, image_filename, width: int, height: int, labels,save_root, class_name_dict, conf_thresh_dict=None):""":param image_folder: 图片的相对路径:param image_filename: 000001.jpg:param width: 图片宽:param height: 图片高:param labels: 目标框:[[class_index, xmin, ymin, xmax, ymax], ...]:param save_root: 保存xml的根目录:param class_name_dict: cls_index:cls_name,根据index获取正确的类别name:param conf_thresh_dict: cls_index:conf_thresh,根据不同类别设置的阈值获取对应的目标,如果设置为None,则表示保存的txt没有置信度:return:"""# 创建 XML 文件的根元素root = ET.Element("annotation")# 添加图片信息folder = ET.SubElement(root, "folder")folder.text = str(image_folder)# 图片名字filename = ET.SubElement(root, "filename")filename.text = os.path.join(image_filename)# 图片大小size = ET.SubElement(root, "size")width_element = ET.SubElement(size, "width")width_element.text = str(width)height_element = ET.SubElement(size, "height")height_element.text = str(height)depth = ET.SubElement(size, "depth") # 通道数depth.text = "3"# 添加目标框信息for label in labels:# 如果该参数设置为None,表示保存的txt没有Noneif conf_thresh_dict is None:# 保证这几项是整数class_index, x1, y1, x2, y2 = label.astype(dtype=np.int32)else:class_index, x1, y1, x2, y2, conf = label# 保证这几项是整数class_index, x1, y1, x2, y2 = np.array([class_index, x1, y1, x2, y2], dtype=np.int32)# 根据置信度过滤是否保存项if conf < conf_thresh_dict[class_index]:continueobj = ET.SubElement(root, "object")name = ET.SubElement(obj, "name")name.text = class_name_dict[int(class_index)]pose = ET.SubElement(obj, "pose")pose.text = "Unspecified"truncated = ET.SubElement(obj, "truncated")truncated.text = "0"difficult = ET.SubElement(obj, "difficult")difficult.text = "0"bndbox = ET.SubElement(obj, "bndbox")xmin = ET.SubElement(bndbox, "xmin")xmin.text = str(x1)ymin = ET.SubElement(bndbox, "ymin")ymin.text = str(y1)xmax = ET.SubElement(bndbox, "xmax")xmax.text = str(x2)ymax = ET.SubElement(bndbox, "ymax")ymax.text = str(y2)# 创建 XML 文件并保存xml_str = ET.tostring(root, encoding="utf-8")xml_str = minidom.parseString(xml_str)# 设置缩进为4个空格,xml可读性提高pretty_xml = xml_str.toprettyxml(indent=" " * 4)save_path = os.path.join(save_root, f"{os.path.splitext(image_filename)[0]}.xml")os.makedirs((os.path.dirname(save_path)), exist_ok=True)with open(save_path, "w") as xmlFile:xmlFile.write(pretty_xml)def resize_and_pad(image: np.ndarray, labels: np.ndarray, width=1920, height=1080):""":param image::param labels: (cls_id, x, y, w, h):param width::param height::return:"""def _resize(image: np.ndarray, labels: np.ndarray, width, height):""":param image::param labels: (cls_id, x, y, w, h):param width::param height::return:image: 最后的图片labels: (cls_id, x, y, w, h)"""# 判断图片的尺寸,如果尺寸比目标尺寸大,就等比例缩放,斌使用纯白色填充,如果尺寸比目标尺寸小就直接填充到目标尺寸img_h, img_w = image.shape[:2]if img_w < width and img_h < height:# 直接填充# 填充的宽度和高度dw = (width - img_w) // 2dh = (height - img_h) // 2# 创建一个新的蒙版new_image = np.ones(shape=(height, width, 3), dtype=np.uint8) * 255# 将图片填充到里面new_image[dh:dh + img_h, dw:dw + img_w, :] = image[:, :, :]# 标签平移,(cls_id, x, y, w, h)labels[..., 1] += dwlabels[..., 2] += dhelse:# 等比例缩放后再填充# 计算宽度和高度的缩放比例ratio = min((width / img_w), (height / img_h))# 计算缩放后的宽度和高度new_width = int(img_w * ratio)new_height = int(img_h * ratio)# 等比例缩放图像resized_img = cv2.resize(image, (new_width, new_height))# 计算需要填充的宽度和高度dw = (width - new_width) // 2dh = (height - new_height) // 2# 创建一个新的蒙版new_image = np.ones(shape=(height, width, 3), dtype=np.uint8) * 255# 将图片填充到里面new_image[dh:dh + new_height, dw:dw + new_width, :] = resized_img[:, :, :]# 标签缩放,平移;(cls_id, x, y, w, h)labels[..., 1:] *= ratio # 坐标和宽高都需要缩放# 只有中心点需要平移,不影响宽高labels[..., 1] += dwlabels[..., 2] += dhreturn new_image, labelsSCALE = 2# 原图的宽高img_h, img_w = image.shape[:2]# NOTE:先在外面扩大一次,写和内部函数,在判断,如果图片比目标尺寸大,就等比例缩放,如果图片比目标尺寸小,就直接填充# 比较小,先扩大再等比例缩放;比较大,直接等比例缩放if img_w < width and img_h < height:new_w = img_w * SCALEnew_h = img_h * SCALE# 图片扩大为原来的2倍image = cv2.resize(image, (new_w, new_h))# labels也扩大,因为图片扩大2倍,所以目标的中心点和宽高都会扩大同样的倍数labels[..., 1:] *= SCALE# 缩放和填充new_image, new_labels = _resize(image, labels, width=width, height=height)return new_image, new_labelsdef run(image_path, xml_root,image_root, save_image_root, save_xml_root,class_index_dict, class_name_dict):image_file = os.path.basename(image_path)image_name, suffix = os.path.splitext(image_file)xml_path = image_path.replace(image_root, xml_root).replace(suffix, ".xml")if not os.path.exists(xml_path):print(f"\n{image_path} no xml\n")returntry:# 读图image = cv2.imread(image_path)if image is None:return# (cls_id, x, y, w, h)labels = decodeVocAnnotation(xml_path, class_index_dict)if len(labels) == 0:print(f"\n{image_path} no label\n")returnlabels = np.array(labels, dtype=np.float64)if labels.ndim < 2:labels = labels[None, ...]# 坐标框转成xywhlabels[..., 1:] = xyxy2xywh(labels[..., 1:].copy())# resize and padnew_image, new_labels = resize_and_pad(image, labels.copy(), width=1920, height=1080)new_img_h, new_img_w = new_image.shape[:2]# 坐标框转成xyxynew_labels[..., 1:] = xywh2xyxy(new_labels[..., 1:].copy())# 开始保存# save_image_path = image_path.replace(image_root, save_image_root)save_image_path = os.path.join(save_image_root,os.path.basename(os.path.dirname(image_path)),f"aug_{image_file}")save_xml_path = save_image_path.replace(save_image_root, save_xml_root).replace(suffix, ".xml")os.makedirs(os.path.dirname(save_image_path), exist_ok=True)os.makedirs(os.path.dirname(save_xml_path), exist_ok=True)# 保存图片cv2.imwrite(save_image_path, new_image)# 创建xmlcreate_voc_xml(image_folder=save_image_path.replace(save_image_root + os.sep, ""),image_filename=os.path.basename(save_image_path),width=new_img_w,height=new_img_h,labels=np.array(new_labels, dtype=np.int32),save_root=os.path.dirname(save_xml_path),class_name_dict=class_name_dict, )print(f"\r{image_path}", end='')except Exception as e:print(f"{image_path} {run.__name__}:{e}")def run_process(root_file_list,image_root, xml_root, save_image_root, save_xml_root,class_index_dict, class_name_dict):# 使用线程池控制程序执行with futures.ThreadPoolExecutor(max_workers=5) as executor:for root, file in root_file_list:# 向线程池中提交任务,向线程池中提交任务的时候是一个一个提交的image_path = os.path.join(root, file)executor.submit(run,*(image_path, xml_root,image_root, save_image_root, save_xml_root,class_index_dict, class_name_dict))if __name__ == '__main__':class_index_dict = {"fire": 0,"smoke": 1,}class_name_dict = {0: "fire",1: "smoke",}data_root = r"Z:\Datasets\FireSmoke_v4"data_root = os.path.abspath(data_root)# 数据的原图根目录image_root = os.path.join(data_root, "images")# xml标注文件根目录xml_root = os.path.join(data_root, "annotations")# 保存根目录save_image_root = os.path.join(image_root, "aug-pad")save_xml_root = os.path.join(xml_root, "aug-pad")# 过滤点不想用的目录exclude_dirs = [os.sep + r"background",os.sep + r"candle_fire",os.sep + r"AUG",os.sep + r"smoke",os.sep + r"val",os.sep + r"aug-merge",os.sep + r"candle_fire",os.sep + r"cut_aug",os.sep + r"miniFire",os.sep + r"net",os.sep + r"new_data",os.sep + r"realScenario",os.sep + r"smoke",os.sep + r"TSMCandle",]max_workers = 10 # 线程/进程 数print(f"max_workers:{max_workers}")# 一个进程处理多少图片max_file_num = 3000# 保存root和file的listroot_file_list = list()# 创建进程池,根据自己的设备自行调整,别太多,否则会变慢pool = multiprocessing.Pool(processes=max_workers)for root, _, files in os.walk(image_root):# 只要其中有一个,就跳过if any(map(lambda x: x in root, exclude_dirs)):continuefor file in files:file_name, suffix = os.path.splitext(file)if suffix.lower() not in (".jpg", ".jpeg", ".bmp", ".png"):continueroot_file_list.append((root, file))if len(root_file_list) > max_file_num:pool.apply_async(run_process,(deepcopy(root_file_list),image_root, xml_root, save_image_root, save_xml_root,class_index_dict, class_name_dict))# 清除列表中的存储root_file_list.clear()else:pool.apply_async(run_process,(deepcopy(root_file_list),image_root, xml_root, save_image_root, save_xml_root,class_index_dict, class_name_dict))# 清除列表中的存储root_file_list.clear()# 关闭进程池pool.close()# 等待所有子进程执行结束pool.join()print("\nFinish ...")