【数据结构与算法】:堆排序和选择排序

1. 堆排序

堆排序是一种比较复杂的排序算法,因为它的流程比较多,理解起来不会像冒泡排序和选择排序那样直观。

1.1 堆的结构
要理解堆排序,首先要理解堆。堆的逻辑结构是一棵完全二叉树,物理结构是一个数组。 (如果不知道什么是二叉树,请前往我的主页查看)所以堆是一个用数组表示的完全二叉树。如图:
在这里插入图片描述

1.2 堆的左右子树与下标的关系

现在的需求是要对数组元素进行排序,所以事实上我们还是通过数组的下标来操纵数组的元素。但是我们已经把数组想象成一棵完全二叉树了,怎么通过二叉树的左右子树来确定数组下标呢?有如下性质:

  1. leftchild = parent * 2 + 1
  2. rightchild = parent * 2 + 2
  3. parent = (child - 1) /2child 是左孩子或右孩子
  4. 堆的右子树 = 左子树 + 1

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/7b8d8d56960041629f715eaf16124b62.png

1.3 大堆和小堆的概念

  • 大(顶)堆是指所有父亲节点的值都大于等于孩子节点的值。大堆的堆顶是数组元素的最大值
  • 小(顶)堆是指所有父亲节点的值都小于等于孩子节点的值。小堆的堆顶是数组元素的最小值

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/d1e27a901f584536bf9ccbdab885862c.png

堆排序主要分三步:
(1)构建堆
(2)调整堆
(3)堆排序

首先需要明确一点,构建堆是在数组基础上构建的换句话说就是将数组抽象成一个二叉堆,而不是凭空构建。

1.1排序思想

1.首先将待排序的数组构造一个大根堆,此时,整个数组的最大值就是堆结构的顶端。
2.将堆结构内顶端的数与堆的最后一个叶节点所在的数交换,此时,末尾的数为最大值,把它不看作堆里面的了,剩余待排序的个数为n - 1
3.将剩余的n - 1个数再构造成大根堆,再将堆顶的数与n - 1位置的数交换,如此反复执行,最后就能得到有序数组了

注意:排升序建大根堆,排降序建小根堆。(默认排升序)

原因:由于堆排序的本质是选数排序,是通过堆来选数的。如果排升序时建小堆,最小的数在堆顶已经被选出来了。那么在剩下的数中再去选数,但是这时剩下的数的父子结构关系都乱了,需要重新建堆才能选出下一个数,建堆的时间复杂度是0(N),这样堆排序就没有效率优势了。

  • 如何构造大堆

想要建大堆,首先要理解向下调整算法前提是左右子树都是大堆,否则无法使用该算法(如果要建小堆,则使用向下调整算法的前提是左右子树都是小堆)。

算法思路:
从根节点开始,选出左右孩子中大的那一个,跟父亲比较,如果比父亲大就和父亲交换位置,然后再继续向下调,调到叶节点就终止

举一个简单的例子解释:
在这里插入图片描述

向下调整算法代码实现如下:

注意:第一个if的判断条件中child + 1 < sz 是为了避免左子树存在,而右子树不存在的情况,即计算右子树的下标时数组越界了


void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}//sz是数组元素个数
void AdjustDown(int* arr, int sz, int root)
{int parent = root;int child = parent * 2 + 1;//默认孩子是左孩子while (child <sz){//选出左右孩子中较小的那一个if (child + 1 < sz && arr[child + 1] > arr[child]){child += 1;}if ( arr[child] > arr[parent]){Swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

但是我们知道一个任意的数组要满足这个前提是几乎不可能的,那么给定一个无序的序列,该如何利用向下调整算法构建成大堆呢

![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=https%3A%2F%2Fimgblog.csdnimg.cn%2Fdirect%2Ff30892cf7e694bc7b83e0ceb633ff093.png&pos_id=img-QHNSTLpS-1712537662852

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/ab42586bcbdf4619aea79712b94e028e.png

首先我们任意给定一个无序的数组,将其看做一个堆结构,一个没有规则的二叉树,将序列里的值按照从上往下,从左到右依次填充到二叉树中。

![![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/cf9b819bb9d84fe598424cbdde03518e.png](https://img-blog.csdnimg.cn/direct/bd29ffbde1f64d5bae6b5699b5019323.png

再经过分析,叶子节点不需要调,因为叶子节点没有左右子树,可以当成大堆。所以应该倒着从最后一个非叶子的子树开始调。 那么最后一个非叶子节点的下标如何计算呢?由上文可知,已知一个孩子的下标,计算其父亲的下标,用 parent = (child - 1) /2即可。如上图,9的下标是4,其父亲6的下标为(4 - 1) / 2 = 1符合。

我们找到了最后一个非叶子节点,即元素值为6的节点,比较它的左右节点中最大的一个的值,是否比他大,如果大就交换位置
在这里5小于6,而9大于6,则交换6和9的位置;
![![![![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/8e312a353c9440ab97dfcad6b9ea990f.png](https://img-blog.csdnimg.cn/direct/b3dbea45957044099882c5d8d450589c.png](https://img-blog.csdnimg.cn/direct/dc9da81f04524c15adf9c7be8e582c77.png](https://img-blog.csdnimg.cn/direct/4cddded9d25947fb9e033b29b88d2380.png

找到下一个非叶子节点4,用它和它的左右子节点进行比较,4大于3,而4小于9,交换4和9位置;

![![![![![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/05d07a38f0c041da8cd39f5749e02d9f.png](https://img-blog.csdnimg.cn/direct/1e9a2d3c835a44c0a39a0ada530bb67e.png](https://img-blog.csdnimg.cn/direct/4e54919fe8cf41b98e194561adc78b75.png](https://img-blog.csdnimg.cn/direct/90be6d87e5914f628ecdfdbd6f0d54a7.png](https://img-blog.csdnimg.cn/direct/ec6a93164ba94ecab4116dea5b1cd17f.png

此时发现4小于5和6这两个子节点,我们需要进行调整,左右节点5和6中,6大于5且6大于父节点4,因此交换4和6的位置;

![![![![![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/79250501036045fe8098c5f772f8d45e.png](https://img-blog.csdnimg.cn/direct/8a2b25d834a649cba8f3e2c638042a82.png](https://img-blog.csdnimg.cn/direct/35fd0e8347ee41999a2935620a7b986e.png](https://img-blog.csdnimg.cn/direct/1cfa3f7fabbc42559e8b7be672088a9f.png](https://img-blog.csdnimg.cn/direct/46cc04ce83864e74ac09deeae7b7d4b3.png

此时我们就构造出来一个大根堆。代码实现如下:

注意:for循环中的sz - 1是指数组最后一个元素的下标,即最后一个叶子的位置(sz - 1 - 1) / 2是指最后一个非叶子节点的位置

void HeapSort(int* arr, int sz)
{//建堆//但是,如果我们要排升序,就要建大堆for (int i = (sz - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, sz, i);//建好了大堆}
}

通过上述操作建好了大堆,接下来进行排序

首先将顶点元素9与末尾元素4交换位置,此时末尾数字为最大值。排除已经确定的最大元素,将剩下元素重新构建大根堆。
第一次交换重构如图:
![![![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/ab40c52232ac411fbce6bfa91cd27af7.png](https://img-blog.csdnimg.cn/direct/d4abc5f6fe914182ad1e196b0ea5a2dc.png](https://img-blog.csdnimg.cn/direct/f61699b41c2749a7b264470692a2579b.png

此时元素9已经有序,末尾元素则为4(每调整一次,调整后的尾部元素在下次调整重构时都不能动)。
第二次交换重构如图:

![![![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/ad777bf274cb4e8f93ad8ce5ee657992.png](https://img-blog.csdnimg.cn/direct/fc48ceb896c542148b3d80593c3a6109.png](https://img-blog.csdnimg.cn/direct/7b82cf7dc86447ccb901241fca961074.png

最终排序结果:
![![![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/58b6d443391c44308405685214acaba1.png](https://img-blog.csdnimg.cn/direct/d935b4cbddf24bce84bdff6b006698e0.png](https://img-blog.csdnimg.cn/direct/77288401207d4a6f8b146dc7febfd1b5.png

排序代码实现如下:

void HeapSort(int* arr, int sz)
{//建堆//但是,如果我们要排升序,就要建大堆for (int i = (sz - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, sz, i);//建好了大堆}int end = sz - 1;while (end > 0){//把第一个最大的和最后一个交换,把它不看作堆里的Swap(&arr[0], &arr[end]);//再把前n-1个向下调整成升序,再选出次大的数AdjustDown(arr, end, 0);//end是需要调整的个数,0是根参数,//用的是数组第一个元素的下标end--;}
}

由此,我们可以归纳出堆排序算法的步骤:

1.把无序数组构建成二叉堆。

2.循环删除堆顶元素,移到集合尾部,调节堆产生新的堆顶。

当我们删除一个最大堆的堆顶(并不是完全删除,而是替换到最后面),经过自我调节,第二大的元素就会被交换上来,成为最大堆的新堆顶。

正如上图所示,当我们删除值为9的堆顶节点,经过调节,值为6的新节点就会顶替上来;当我们删除值为6的堆顶节点,经过调节,值为5的新节点就会顶替上来…

由于二叉堆的这个特性,我们每一次删除旧堆顶,调整后的新堆顶都是大小仅次于旧堆顶的节点。那么我们只要反复删除堆顶,反复调节二叉堆,所得到的集合就成为了一个有序集合。

1.4 堆排序的全过程完整代码实现如下:


void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}//sz是数组元素个数
void AdjustDown(int* arr, int sz, int root)
{int parent = root;int child = parent * 2 + 1;//默认孩子是左孩子while (child <sz){//选出左右孩子中较大的那一个if (child + 1 < sz && arr[child + 1] > arr[child]){child += 1;}if ( arr[child] > arr[parent]){Swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}void HeapSort(int* arr, int sz)
{//建堆//但是,如果我们要排升序,就要建大堆for (int i = (sz - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, sz, i);//建好了大堆}int end = sz - 1;while (end > 0){//把第一个最大的和最后一个交换,把它不看作堆里的Swap(&arr[0], &arr[end]);//再把前n-1个向下调整成升序,再选出次大的数AdjustDown(arr, end, 0);//end是需要调整的个数,0是根参数,//用的是数组第一个元素的下标end--;}
}

排序结果是:
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/3cbb2bb1cd5b44e89cf8f904694f78d5.png

1.5堆排序的时间复杂度:0(N*logN),是不稳定的排序。

2. 选择排序

选择排序是所有排序算法中最简单的,最容易理解的,同时也是效率极差的排序,几乎不用。

2.1 排序思想:

遍历一个无序数组,一次选出最大值和最小值,再把这两个值分别放到最前和最后的位置;重复这个操作,选出次大值,次小值,分别放到数组的第二个位置和倒数第二个位置……

图解如下:(默认排升序)

begin ,end,maxi,mini存放的都是下标让begin指向第一个元素,end指向最后一个元素通过遍历数组,在begin和end区间内找到最大值8,下标maxi = 2,最小值-1,下标mini = 3

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/86defaa277ef4ce0adc4743ee9d4db67.png

再让最大值和最小值分别与end,begin位置上的数交换,这样最小的就排在最前面,最大的就排在最后面了,再begin++,end–,在新区间内找到最大值和最小值

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/d66abd19a0454d00bb67c197ca8b29c9.png

再次交换后,就得到了有序数组。

在这里插入图片描述

2.2 代码的实现如下:


void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}void SelectSort(int* arr, int sz)
{int begin = 0;int end = sz - 1;while (begin < end){int maxi = begin;int mini = end;//循环找出当前数中的最大数和最小数for (int i = begin; i <= end; i++){if (arr[i] > arr[maxi]){maxi = i;}if (arr[i] < arr[mini]){mini = i;}}//让最大值和最小值分别与end,begin位置上的数交换Swap(&arr[begin], &arr[mini]);Swap(&arr[end], &arr[maxi]);begin++;end--;}
}

2.3 代码的优化:

但是上述代码有Bug!如果begin和maxi位置上的数重叠,交换时就会发生混乱!图解如下:

maxi和end位置上的数交换后,把最小值换走了,此时最大值放在了最小值的位置上,如果begin再和mini位置上的数交换,排序就会出错!
在这里插入图片描述
代码优化如下:

void SelectSort(int* arr, int sz)
{int begin = 0;int end = sz - 1;while (begin < end){int maxi = begin;int mini = end;//循环找出当前数中的最大数和最小数for (int i = begin; i <= end; i++){if (arr[i] > arr[maxi]){maxi = i;}if (arr[i] < arr[mini]){mini = i;}}Swap(&arr[begin], &arr[mini]);//如果begin和maxi位置上的数重叠,就要修正一下maxi的位置if (begin == maxi){maxi = mini;}Swap(&arr[end], &arr[maxi]);begin++;end--;}
}

排序结果如图:
在这里插入图片描述

2.4 时间复杂度和稳定性

由于两个循环执行的次数大致都是N次(N为数组元素的个数),所以选择排序的时间复杂度为0(N*N),就算是最好的情况下,数组有序,时间复杂度也是0(N * N),选择排序是不稳定的排序

3. 堆排序和选择排序的性能比较

clock() 函数是 <time.h> 头文件中的一个函数,用来返回程序启动到函数调用时之间的CPU时钟周期数。这个值通常用来帮助衡量程序或程序的某个部分的性能

我们可以用这个函数进一步对比两种排序占用的CPU时间

代码实现为:

// 测试排序的性能对比
void TestOP()
{srand(time(0));const int N = 100000;int* a1 = (int*)malloc(sizeof(int) * N);int* a2 = (int*)malloc(sizeof(int) * N);int* a3 = (int*)malloc(sizeof(int) * N);int* a4 = (int*)malloc(sizeof(int) * N);int* a5 = (int*)malloc(sizeof(int) * N);int* a6 = (int*)malloc(sizeof(int) * N);for (int i = 0; i < N; ++i){a1[i] = rand();a3[i] = a1[i];a4[i] = a1[i];}int begin3 = clock();SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a4, N);int end4 = clock();printf("SelectSort:%d\n", end3 - begin3);printf("HeapSort:%d\n", end4 - begin4);free(a3);free(a4);}int main()
{TestOP();return 0;
}

这里随机生成十万个随机数,分别用希尔排序和直接插入排序来进行排序,测试两种算法的执行时间:

在这里插入图片描述

由执行结果可知,堆排序的效率远远高于选择排序。选择排序真的很差!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/803311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

链表的中间结点——每日一题

题目链接&#xff1a; OJ链接 题目&#xff1a; 给你单链表的头结点 head &#xff0c;请你找出并返回链表的中间结点。 如果有两个中间结点&#xff0c;则返回第二个中间结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[3,4,5] 解释&…

【架构师】-- 成长路线图

成长为软件架构师不是一件容易的事&#xff0c;这篇文章列举了架构师需要学习的技术储备&#xff0c;给出了成为软件架构师的路线图&#xff0c;帮助有志于在架构领域成长的同学可以明确学习的方向。原文&#xff1a;Master Plan for becoming a Software Architect[1] 软件架…

【优选算法专栏】专题十八:BFS解决拓扑排序(一)

本专栏内容为&#xff1a;算法学习专栏&#xff0c;分为优选算法专栏&#xff0c;贪心算法专栏&#xff0c;动态规划专栏以及递归&#xff0c;搜索与回溯算法专栏四部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握算法。 &#x1f493;博主csdn个人主页&#xff1a;小…

shamrockcms代码审计-啥也没有

shamrockcms 环境搭建 使用阿里源&#xff0c;创建数据库&#xff0c;运行shamrockcms.sql文件&#xff0c;将configure.properties中的jdbc修改为自己本地或者其他ip数据库连接&#xff0c;并且将ueditor.config.json中的master修改为localhost或者其他自己设置的ip 危险组件…

基于知识图谱的推理:智能决策与自动发现

基于知识图谱的推理&#xff1a;智能决策与自动发现 一、引言 在今天这个数据驱动的时代&#xff0c;我们经常会听到人们提及“知识图谱”这个词。知识图谱&#xff0c;作为一种结构化知识的表达方式&#xff0c;已经成为智能系统不可或缺的一部分&#xff0c;它通过连接大量的…

numpy,matplotilib学习(菜鸟教程)

所有内容均来自于&#xff1a; NumPy 教程 | 菜鸟教程 Matplotlib 教程 | 菜鸟教程 numpy模块 numpy.nditer NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。 for x in np.nditer(a, orderF):Fortran order&#xff0c;即是列序优先&#x…

三小时使用鸿蒙OS模仿羊了个羊,附源码

学习鸿蒙arkTS语言&#xff0c;决定直接通过实践的方式上手&#xff0c;而不是一点点进行观看视频再来实现。 结合羊了个羊的开发思路&#xff0c;准备好相应的卡片素材后进行开发。遇到了需要arkTS进行解决的问题&#xff0c;再去查看相应的文档。 首先需要准备卡片对应的图片…

【STL】顺序容器与容器适配器

文章目录 1顺序容器概述1.1array1.2forward_list1.3deque 2.如何确定使用哪种顺序容器呢&#xff1f;3.容器适配器的概念4.如何定义适配器呢&#xff1f; 1顺序容器概述 给出以下顺序容器表&#xff1a; 顺序容器类型作用vector可变大小的数组&#xff0c;支持快速访问&#…

lua学习笔记15(元表的学习)

print("*****************************元表的学习*******************************") print("*****************************元表的概念*******************************") --任何变量都可以作为另一个表变量的元表 --任何表变量都可以有自己的元表 --当我…

谷歌浏览器变黑色背景 扩展程序 Hacker Vision

这个扩展程序能够把浏览器的背景变成黑色&#xff0c;长时间阅读文章的时候护眼效果很不错 效果如下

《前端面试题》- JS基础 - call()、apply()、bind() 的区别

call 、bind 、 apply 这三个函数的功能都是改变this的指向问题&#xff0c;但是也存在一定的区别。 call 的参数是直接放进去的&#xff0c;第二第三第 n 个参数全都用逗号分隔,apply 的所有参数都必须放在一个数组里面传进去bind 除了返回是函数以外&#xff0c;它 的参数和…

美团一面:说说synchronized的实现原理?问麻了。。。。

引言 在现代软件开发领域&#xff0c;多线程并发编程已经成为提高系统性能、提升用户体验的重要手段。然而&#xff0c;多线程环境下的数据同步与资源共享问题也随之而来&#xff0c;处理不当可能导致数据不一致、死锁等各种并发问题。为此&#xff0c;Java语言提供了一种内置…

PUBG绝地求生29.1版本延迟高/卡顿/掉帧/丢包的快速解决方法

要想在绝地求生中获得好成绩&#xff0c;咱们需求把握一些根本的游戏技巧。比方&#xff0c;在挑选降落点时&#xff0c;咱们可以运用u标签来着重“安全”二字。挑选一个相对较为安全的降落点可以防止与其他玩家过早触摸&#xff0c;给自己争夺更多时间来搜集资源和配备。接下来…

ORAN C平面 Section Extension 22

ORAN C平面Section扩展22用于ACK/NACK请求。除section type 7外&#xff0c;section扩展22可以用于从O-DU发送到O-RU的所有section type和section扩展。 对于一个section描述&#xff0c;O-DU可以使用section扩展22要求O-RU使用section type 8 C平面消息进行ACK/NACK反馈。关于…

MyBatis源码介绍

文章目录 MyBatis的核心流程介绍SqlSessionFactory的理解MyBatis中的Executor的源码理解Spring中是如何解决MySQL的SqlSession的线程安全问题MyBatis面向Mapper编程工作原理Mybatis动态sql执行原理Mybatis的一级、二级缓存实现原理Mybatis的插件运行原理以及如何编写一个插件my…

制作一个RISC-V的操作系统十-Trap和Exception(流 mtvec mepc mcause mtval mstatus trap完整流程)

文章目录 流mtvecmepcmcausemtvalmstatustrap 初始化trap的top half&#xff08;硬件完成&#xff09;trap的bottom half&#xff08;软件完成&#xff09;从trap返回代码实现 流 控制流&#xff1a;程序控制的执行流 trap分为中断和异常 mtvec base&#xff1a;存储trap入…

2_8.Linux系统引导过程及引导修复

# 1.磁盘引导 # mbr主引导记录0磁道1扇区446 作用&#xff1a; 记录grub2引导文件的位置 当mbr数据丢失系统会因为找不到启动分区而停止启动 问题模拟方式: 系统磁盘/dev/sda dd if/dev/zero of/dev/vda bs446 count1 ##清空系统/dev/sda上的mbr数据 恢复方式&#xff1a; &…

图形化界面使用MQ!!!

一、docker安装 1、拉去镜像 docker pull rabbitmq:3.10-management 2、Docker运行&#xff0c;并设置开机自启动&#xff08;第一个-p是MQ默认配置的端口&#xff0c;第二个-p是图形化界面配置的端口&#xff09; docker run -d --restartalways --name rabbitmq -p 5672:5672…

直播系统的短视频直播源码,带有多功能后台系统的直播短视频平台 APP 源码。

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 此源码是一个直播系统&#xff0c;集直播、短视频等功能&#xff0c;根据市场趋势开发并推出思乐直播APP&#xff0c;APP功能丰富且可在后台管理系统进行配置&#xff0c;做到按需求来…

《QT实用小工具·二十二》多种样式导航按钮控件

1、概述 源码放在文章末尾 该项目实现了多种样式的导航按钮控件 可设置文字的左侧、右侧、顶部、底部间隔。 可设置文字对齐方式。 可设置显示倒三角、倒三角边长、倒三角位置、倒三角颜色。 可设置显示图标、图标间隔、图标尺寸、正常状态图标、悬停状态图标、选中状态图标…