为什么 MySQL 采用 B+ 树作为索引?

资料来源 : 小林coding

小林官方网站 : 小林coding (xiaolincoding.com)

「为什么 MySQL 采用 B+ 树作为索引?」这句话,是不是在面试时经常出现。

要解释这个问题,其实不单单要从数据结构的角度出发,还要考虑磁盘 I/O 操作次数,因为 MySQL 的数据是存储在磁盘中的嘛。

这次,就跟大家一层一层的分析这个问题,图中包含大量的动图来帮助大家理解,相信看完你就拿捏这道题目了!

怎样的索引的数据结构是好的?

MySQL 的数据是持久化的,意味着数据(索引+记录)是保存到磁盘上的,因为这样即使设备断电了,数据也不会丢失。

磁盘是一个慢的离谱的存储设备,有多离谱呢?

人家内存的访问速度是纳秒级别的,而磁盘访问的速度是毫秒级别的,也就是说读取同样大小的数据,磁盘中读取的速度比从内存中读取的速度要慢上万倍,甚至几十万倍。

磁盘读写的最小单位是扇区,扇区的大小只有 512B 大小,操作系统一次会读写多个扇区,所以操作系统的最小读写单位是块(Block)。Linux 中的块大小为 4KB,也就是一次磁盘 I/O 操作会直接读写 8 个扇区。

由于数据库的索引是保存到磁盘上的,因此当我们通过索引查找某行数据的时候,就需要先从磁盘读取索引到内存,再通过索引从磁盘中找到某行数据,然后读入到内存,也就是说查询过程中会发生多次磁盘 I/O,而磁盘 I/O 次数越多,所消耗的时间也就越大。

所以,我们希望索引的数据结构能在尽可能少的磁盘的 I/O 操作中完成查询工作,因为磁盘 I/O 操作越少,所消耗的时间也就越小。

另外,MySQL 是支持范围查找的,所以索引的数据结构不仅要能高效地查询某一个记录,而且也要能高效地执行范围查找。

所以,要设计一个适合 MySQL 索引的数据结构,至少满足以下要求:

  • 能在尽可能少的磁盘的 I/O 操作中完成查询工作;
  • 要能高效地查询某一个记录,也要能高效地执行范围查找;

分析完要求后,我们针对每一个数据结构分析一下。

什么是二分查找?

索引数据最好能按顺序排列,这样可以使用「二分查找法」高效定位数据。

假设我们现在用数组来存储索引,比如下面有一个排序的数组,如果要从中找出数字 3,最简单办法就是从头依次遍历查询,这种方法的时间复杂度是 O(n),查询效率并不高。因为该数组是有序的,所以我们可以采用二分查找法,比如下面这张采用二分法的查询过程图:

可以看到,二分查找法每次都把查询的范围减半,这样时间复杂度就降到了 O(logn),但是每次查找都需要不断计算中间位置

什么是二分查找树?

用数组来实现线性排序的数据虽然简单好用,但是插入新元素的时候性能太低。

因为插入一个元素,需要将这个元素之后的所有元素后移一位,如果这个操作发生在磁盘中呢?这必然是灾难性的。因为磁盘的速度比内存慢几十万倍,所以我们不能用一种线性结构将磁盘排序。

其次,有序的数组在使用二分查找的时候,每次查找都要不断计算中间的位置。

那我们能不能设计一个非线形且天然适合二分查找的数据结构呢?

有的,请看下图这个神奇的操作,找到所有二分查找中用到的所有中间节点,把他们用指针连起来,并将最中间的节点作为根节点。

怎么样?是不是变成了二叉树,不过它不是普通的二叉树,它是一个二叉查找树

二叉查找树的特点是一个节点的左子树的所有节点都小于这个节点,右子树的所有节点都大于这个节点,这样我们在查询数据时,不需要计算中间节点的位置了,只需将查找的数据与节点的数据进行比较。

假设,我们查找索引值为 key 的节点:

  1. 如果 key 大于根节点,则在右子树中进行查找;
  2. 如果 key 小于根节点,则在左子树中进行查找;
  3. 如果 key 等于根节点,也就是找到了这个节点,返回根节点即可。

二叉查找树解决了插入新节点的问题,因为二叉查找树是一个跳跃结构,不必连续排列。这样在插入的时候,新节点可以放在任何位置,不会像线性结构那样插入一个元素,所有元素都需要向后排列。

二叉查找树解决了连续结构插入新元素开销很大的问题,同时又保持着天然的二分结构。

那是不是二叉查找树就可以作为索引的数据结构了呢?

不行不行,二叉查找树存在一个极端情况,会导致它变成一个瘸子!

当每次插入的元素都是二叉查找树中最大的元素,二叉查找树就会退化成了一条链表,查找数据的时间复杂度变成了 O(n)

由于树是存储在磁盘中的,访问每个节点,都对应一次磁盘 I/O 操作(假设一个节点的大小「小于」操作系统的最小读写单位块的大小),也就是说树的高度就等于每次查询数据时磁盘 IO 操作的次数,所以树的高度越高,就会影响查询性能。

二叉查找树由于存在退化成链表的可能性,会使得查询操作的时间复杂度从 O(logn) 升为 O(n)。

而且会随着插入的元素越多,树的高度也变高,意味着需要磁盘 IO 操作的次数就越多,这样导致查询性能严重下降,再加上不能范围查询,所以不适合作为数据库的索引结构。

什么是自平衡二叉树?

为了解决二叉查找树会在极端情况下退化成链表的问题,后面就有人提出平衡二叉查找树(AVL 树)

主要是在二叉查找树的基础上增加了一些条件约束:每个节点的左子树和右子树的高度差不能超过 1。也就是说节点的左子树和右子树仍然为平衡二叉树,这样查询操作的时间复杂度就会一直维持在 O(logn) 。

除了平衡二叉查找树,还有很多自平衡的二叉树,比如红黑树,它也是通过一些约束条件来达到自平衡,不过红黑树的约束条件比较复杂,不是本篇的重点重点,大家可以看《数据结构》相关的书籍来了解红黑树的约束条件。

不管平衡二叉查找树还是红黑树,都会随着插入的元素增多,而导致树的高度变高,这就意味着磁盘 I/O 操作次数多,会影响整体数据查询的效率

比如,下面这个平衡二叉查找树的高度为 5,那么在访问最底部的节点时,就需要磁盘 5 次 I/O 操作。

根本原因是因为它们都是二叉树,也就是每个节点只能保存 2 个子节点 ,如果我们把二叉树改成 M 叉树(M>2)呢?

比如,当 M=3 时,在同样的节点个数情况下,三叉树比二叉树的树高要矮。

因此,当树的节点越多的时候,并且树的分叉数 M 越大的时候,M 叉树的高度会远小于二叉树的高度

什么是 B 树

自平衡二叉树虽然能保持查询操作的时间复杂度在O(logn),但是因为它本质上是一个二叉树,每个节点只能有 2 个子节点,那么当节点个数越多的时候,树的高度也会相应变高,这样就会增加磁盘的 I/O 次数,从而影响数据查询的效率。

为了解决降低树的高度的问题,后面就出来了 B 树,它不再限制一个节点就只能有 2 个子节点,而是允许 M 个子节点 (M>2),从而降低树的高度。

B 树的每一个节点最多可以包括 M 个子节点,M 称为 B 树的阶,所以 B 树就是一个多叉树。

假设 M = 3,那么就是一棵 3 阶的 B 树,特点就是每个节点最多有 2 个(M-1个)数据和最多有 3 个(M个)子节点,超过这些要求的话,就会分裂节点

假设我们在一棵 3 阶的 B 树中要查找的索引值是 9 的记录那么步骤可以分为以下几步:

  1. 与根节点的索引(4,8)进行比较,9 大于 8,那么往右边的子节点走;
  2. 然后该子节点的索引为(10,12),因为 9 小于 10,所以会往该节点的左边子节点走;
  3. 走到索引为9的节点,然后我们找到了索引值 9 的节点。

可以看到,一棵 3 阶的 B 树在查询叶子节点中的数据时,由于树的高度是 3 ,所以在查询过程中会发生 3 次磁盘 I/O 操作。

而如果同样的节点数量在平衡二叉树的场景下,树的高度就会很高,意味着磁盘 I/O 操作会更多。所以,B 树在数据查询中比平衡二叉树效率要高。

但是 B 树的每个节点都包含数据(索引+记录),而用户的记录数据的大小很有可能远远超过了索引数据,这就需要花费更多的磁盘 I/O 操作次数来读到「有用的索引数据」。

而且,在我们查询位于底层的某个节点(比如 A 记录)过程中,「非 A 记录节点」里的记录数据会从磁盘加载到内存,但是这些记录数据是没用的,我们只是想读取这些节点的索引数据来做比较查询,而「非 A 记录节点」里的记录数据对我们是没用的,这样不仅增多磁盘 I/O 操作次数,也占用内存资源。

另外,如果使用 B 树来做范围查询的话,需要使用中序遍历,这会涉及多个节点的磁盘 I/O 问题,从而导致整体速度下降。

什么是 B+ 树?

B+ 树就是对 B 树做了一个升级,MySQL 中索引的数据结构就是采用了 B+ 树,B+ 树结构如下图:

B+ 树与 B 树差异的点,主要是以下这几点:

  • 叶子节点(最底部的节点)才会存放实际数据(索引+记录),非叶子节点只会存放索引;
  • 所有索引都会在叶子节点出现,叶子节点之间构成一个有序链表;
  • 非叶子节点的索引也会同时存在在子节点中,并且是在子节点中所有索引的最大(或最小)。
  • 非叶子节点中有多少个子节点,就有多少个索引;

下面通过三个方面,比较下 B+ 和 B 树的性能区别。

1、单点查询

B 树进行单个索引查询时,最快可以在 O(1) 的时间代价内就查到,而从平均时间代价来看,会比 B+ 树稍快一些。

但是 B 树的查询波动会比较大,因为每个节点即存索引又存记录,所以有时候访问到了非叶子节点就可以找到索引,而有时需要访问到叶子节点才能找到索引。

B+ 树的非叶子节点不存放实际的记录数据,仅存放索引,因此数据量相同的情况下,相比存储即存索引又存记录的 B 树,B+树的非叶子节点可以存放更多的索引,因此 B+ 树可以比 B 树更「矮胖」,查询底层节点的磁盘 I/O次数会更少

2、插入和删除效率

B+ 树有大量的冗余节点,这样使得删除一个节点的时候,可以直接从叶子节点中删除,甚至可以不动非叶子节点,这样删除非常快

注意,:B+ 树对于非叶子节点的子节点和索引的个数,定义方式可能会有不同,有的是说非叶子节点的子节点的个数为 M 阶,而索引的个数为 M-1(这个是维基百科里的定义),因此我本文关于 B+ 树的动图都是基于这个。但是我在前面介绍 B+ 树与 B+ 树的差异时,说的是「非叶子节点中有多少个子节点,就有多少个索引」,主要是 MySQL 用到的 B+ 树就是这个特性。

B+ 树在删除根节点的时候,由于存在冗余的节点,所以不会发生复杂的树的变形 , B 树则不同,B 树没有冗余节点,删除节点的时候非常复杂

B+ 树的插入也是一样,有冗余节点,插入可能存在节点的分裂(如果节点饱和),但是最多只涉及树的一条路径。而且 B+ 树会自动平衡,不需要像更多复杂的算法,类似红黑树的旋转操作等。

因此,B+ 树的插入和删除效率更高

3、范围查询

B 树和 B+ 树等值查询原理基本一致,先从根节点查找,然后对比目标数据的范围,最后递归的进入子节点查找。

因为 B+ 树所有叶子节点间还有一个链表进行连接,这种设计对范围查找非常有帮助,比如说我们想知道 12 月 1 日和 12 月 12 日之间的订单,这个时候可以先查找到 12 月 1 日所在的叶子节点,然后利用链表向右遍历,直到找到 12 月12 日的节点,这样就不需要从根节点查询了,进一步节省查询需要的时间。

而 B 树没有将所有叶子节点用链表串联起来的结构,因此只能通过树的遍历来完成范围查询,这会涉及多个节点的磁盘 I/O 操作,范围查询效率不如 B+ 树。

因此,存在大量范围检索的场景,适合使用 B+树,比如数据库。而对于大量的单个索引查询的场景,可以考虑 B 树,比如 nosql 的MongoDB。

MySQL 中的 B+ 树

MySQL 的存储方式根据存储引擎的不同而不同,我们最常用的就是 Innodb 存储引擎,它就是采用了 B+ 树作为了索引的数据结构。

下图就是 Innodb 里的 B+ 树:

但是 Innodb 使用的 B+ 树有一些特别的点,比如:

  • B+ 树的叶子节点之间是用「双向链表」进行连接,这样的好处是既能向右遍历,也能向左遍历。
  • B+ 树点节点内容是数据页,数据页里存放了用户的记录以及各种信息,每个数据页默认大小是 16 KB。

Innodb 根据索引类型不同,分为聚集和二级索引。他们区别在于,聚集索引的叶子节点存放的是实际数据,所有完整的用户记录都存放在聚集索引的叶子节点,而二级索引的叶子节点存放的是主键值,而不是实际数据。

因为表的数据都是存放在聚集索引的叶子节点里,所以 InnoDB 存储引擎一定会为表创建一个聚集索引,且由于数据在物理上只会保存一份,所以聚簇索引只能有一个,而二级索引可以创建多个。

总结

MySQL 是会将数据持久化在硬盘,而存储功能是由 MySQL 存储引擎实现的,所以讨论 MySQL 使用哪种数据结构作为索引,实际上是在讨论存储引使用哪种数据结构作为索引,InnoDB 是 MySQL 默认的存储引擎,它就是采用了 B+ 树作为索引的数据结构。

要设计一个 MySQL 的索引数据结构,不仅仅考虑数据结构增删改的时间复杂度,更重要的是要考虑磁盘 I/0 的操作次数。因为索引和记录都是存放在硬盘,硬盘是一个非常慢的存储设备,我们在查询数据的时候,最好能在尽可能少的磁盘 I/0 的操作次数内完成。

二分查找树虽然是一个天然的二分结构,能很好的利用二分查找快速定位数据,但是它存在一种极端的情况,每当插入的元素都是树内最大的元素,就会导致二分查找树退化成一个链表,此时查询复杂度就会从 O(logn)降低为 O(n)。

为了解决二分查找树退化成链表的问题,就出现了自平衡二叉树,保证了查询操作的时间复杂度就会一直维持在 O(logn) 。但是它本质上还是一个二叉树,每个节点只能有 2 个子节点,随着元素的增多,树的高度会越来越高。

而树的高度决定于磁盘 I/O 操作的次数,因为树是存储在磁盘中的,访问每个节点,都对应一次磁盘 I/O 操作,也就是说树的高度就等于每次查询数据时磁盘 IO 操作的次数,所以树的高度越高,就会影响查询性能。

B 树和 B+ 都是通过多叉树的方式,会将树的高度变矮,所以这两个数据结构非常适合检索存于磁盘中的数据。

但是 MySQL 默认的存储引擎 InnoDB 采用的是 B+ 作为索引的数据结构,原因有:

  • B+ 树的非叶子节点不存放实际的记录数据,仅存放索引,因此数据量相同的情况下,相比存储即存索引又存记录的 B 树,B+树的非叶子节点可以存放更多的索引,因此 B+ 树可以比 B 树更「矮胖」,查询底层节点的磁盘 I/O次数会更少。
  • B+ 树有大量的冗余节点(所有非叶子节点都是冗余索引),这些冗余索引让 B+ 树在插入、删除的效率都更高,比如删除根节点的时候,不会像 B 树那样会发生复杂的树的变化;
  • B+ 树叶子节点之间用链表连接了起来,有利于范围查询,而 B 树要实现范围查询,因此只能通过树的遍历来完成范围查询,这会涉及多个节点的磁盘 I/O 操作,范围查询效率不如 B+ 树。

完!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/802724.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【六 (3)机器学习-机器学习建模步骤/kaggle房价回归实战】

目录 文章导航一、确定问题和目标:1、业务需求分析:2、问题定义:3、目标设定:4、数据可行性评估:5、资源评估:6、风险评估: 二、数据收集:1、明确数据需求2、选择数据来源3、考虑数据…

SpringCloud Alibaba Seata 处理分布式事务

一、前言 接下来是开展一系列的 SpringCloud 的学习之旅,从传统的模块之间调用,一步步的升级为 SpringCloud 模块之间的调用,此篇文章为第十八篇,即使用 Seata 处理分布式事务。 二、分布式事务问题 当单体应用被拆分成微服务应用…

【超简单】基于PaddleSpeech搭建个人语音听写服务

一、【超简单】之基于PaddleSpeech搭建个人语音听写服务 1.需求分析 亲们,你们要写会议纪要嘛?亲们,你们要写会议纪要嘛?亲们,你们要写会议纪要嘛?当您面对成吨的会议录音,着急写会议纪要而不得不愚公移山、人海战术?听的头晕眼花,听的漏洞百出,听的怀疑人生,那么你…

代码随想录算法训练营Day48|LC198 打家劫舍LC213 打家劫舍IILC337 打家劫舍III

一句话总结&#xff1a;前两题白给&#xff0c;第三题树形DP有点难。 原题链接&#xff1a;198 打家劫舍 滚动数组直接秒了。 class Solution {public int rob(int[] nums) {int n nums.length;int first 0, second nums[0];for (int i 2; i < n; i) {int tmp Math.m…

如何开始用 C++ 写一个光栅化渲染器?

光栅化渲染器是计算机图形学中最基础且广泛应用的一种渲染技术&#xff0c;它将三维模型转化为二维图像。下面我们将逐步介绍如何使用C语言从零开始构建一个简单的光栅化渲染器。 一、理解光栅化渲染原理 光栅化是一种将几何数据&#xff08;如点、线、三角形&#xff09;转换…

电商选品难?那是因为你不会用大数据选品工具…

电商选品之所以难&#xff0c;主要有以下几个方面的原因。电商市场更新换代非常快&#xff0c;新的产品不断涌现&#xff0c;旧的产品可能很快就被淘汰。电商选品紧跟市场趋势&#xff0c;不断调整和更新&#xff0c;这对电商运营市场敏感度和反应速度提出了很高的要求。 电商…

110V降9V1A非隔离降压恒压WT5112

110V降9V1A非隔离降压恒压WT5112 嘿&#xff0c;让我来给你说说这个WT5112控制芯片。这可是个厉害的东西&#xff0c;特别适合用在充电器啊、适配器啊还有LED灯这些地方。它最牛的地方就是能稳稳地控制电压和电流&#xff0c;而且还有个什么原边反馈技术让控制得更准。更酷的是…

MySQL_00001_00000

数据准备 员工表&#xff1a;emp Oracle: create table emp ( empno number(4) not null, ename varchar2(10), job varchar2(9), mgr number(4), hiredate date, sal number(7, 2), comm number(7, 2), deptno number(2) ); insert into em…

数据库讲解---(SQL语句--表的使用)【MySQL版本】

零.前言 数据库讲解&#xff08;MySQL版&#xff09;&#xff08;超详细&#xff09;【第一章】-CSDN博客 数据库-ER图教程_e-r图数据库-CSDN博客 数据库讲解&#xff08;MySQL版&#xff09;&#xff08;超详细&#xff09;【第二章】【上】-CSDN博客 一.SQL概述 1.1SQL简…

组合逻辑电路中的竞争与冒险

竞争与冒险 进行理想的组合逻辑电路分析与设计时&#xff0c;没有考虑逻辑门的延迟时间&#xff08;原因&#xff09;对电路产生的影响&#xff0c;且认为电路的输入和输出均处于稳定的逻辑电平。 实际上&#xff0c;信号经过逻辑门需要一定的时间。不同路径上门电路数目不同…

【Qt】文件与音视频

目录 一、输入输出设备类 二、文件读写类 三、文件和目录信息类 四、音视频 4.1 音频 4.2 视频 文件操作是应用程序必不可少的部分。Qt作为一个通用开发库&#xff0c;提供了跨平台的文件操作能力。Qt提供了很多关于文件的类&#xff0c;通过这些类能够对文件系统进行操作…

LeetCode刷题之94.二叉树中序遍历

文章目录 1. 描述2. 分析2.1 递归方法2.2 迭代 3. 解答3.1 递归3.2 迭代 1. 描述 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 示例1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,3,2] 示例 2&#xff1a; 输入&#xff1a;ro…

浏览器工作原理与实践--页面性能:如何系统地优化页面

在前面几篇文章中&#xff0c;我们分析了页面加载和DOM生成&#xff0c;讨论了JavaScript和CSS是如何影响到DOM生成的&#xff0c;还结合渲染流水线来讲解了分层和合成机制&#xff0c;同时在这些文章里面&#xff0c;我们还穿插说明了很多优化页面性能的最佳实践策略。通过这些…

【C语言】扫雷小游戏

文章目录 前言一、游戏玩法二、创建文件test.c文件menu()——打印菜单game()——调用功能函数&#xff0c;游戏的实现main()主函数 game.c文件初始化棋盘打印棋盘随机布置雷的位置统计周围雷的个数展开周围一片没有雷的区域计算已排查位置的个数排查雷(包括检测输赢): game.h文…

【剪映专业版】04全局设置

视频课程&#xff1a;B站有知公开课【剪映电脑版教程】 设置-全局设置 草稿 草稿位置&#xff1a;非系统盘&#xff08;C盘&#xff09; 素材下载位置与 缓存管理&#xff1a;如果下载素材较多&#xff0c;需要定期删除缓存 预设保存位置&#xff1a;非系统盘&#xff08;C盘&a…

基于SpringBoot2.x、SpringCloud和SpringCloudAlibaba并采用前后端分离的企业级微服务多租户系统架构

简介 基于SpringBoot2.x、SpringCloud和SpringCloudAlibaba并采用前后端分离的企业级微服务多租户系统架构。并引入组件化的思想实现高内聚低耦合并且高度可配置化&#xff0c;适合学习和企业中使用。 真正实现了基于RBAC、jwt和oauth2的无状态统一权限认证的解决方案&#x…

C语言操作符详解(二)

一、位操作符 & 按位与 | 按位或 ^ 按位异或 ~ 按位取反 注意&#xff1a;它们的操作数必须是整数。 下面的码我都只取了后八位 1.1、按位与 使用补码进行按位与 规则:对应二进制位有0就是0,两个同时为1才为1. 1.2、按位或 使用补码进行按位或 规则:对应二进…

【攻防世界】Web_python_template_injection

{{}}是变量包裹标识符&#xff0c;里面存放的是一个变量&#xff0c;当你输入 http://61.147.171.105:55121/{{8*8}} 执行成功&#xff0c;说明存在模版注入。接下来&#xff0c;开始想办法编代码拿到服务器的控制台权限 。 首先&#xff0c;题目告诉我们这是一个 python 注入…

SysTick滴答定时器 - 延时函数

SysTick定时器 Systick定时器&#xff0c;是一个简单的定时器&#xff0c;对于CM3,CM4内核芯片&#xff0c;都有Systick定时器。Systick定时器常用来做延时&#xff0c;或者实时系统的心跳时钟。这样可以节省MCU资源&#xff0c;不用浪费一个定时器。比如UCOS中&#xff0c;分…

每日一题:矩阵置零

给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[1,0,1]]使用两个标记变量。 class Sol…