Elasticsearch索引之嵌套类型:深度剖析与实战应用

码到三十五 : 个人主页

心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 !

Elasticsearch是一个基于Lucene的搜索服务器,它提供了一个分布式、多租户能力的全文搜索引擎,并带有一个基于HTTP的Web界面和基于JSON的文档。在Elasticsearch中,嵌套类型索引是一个非常重要的功能,它允许我们处理具有一对多关系的复杂数据结构。本文将深入探讨Elasticsearch中的嵌套类型索引,包括其定义、应用、查询、注意事项以及可能的替代方案。

目录

      • 前言
      • 一、嵌套类型作用
      • 二、nested 类型与object 类型的不同点
      • 三、嵌套类型的定义
      • 四、索引嵌套文档
      • 五、查询嵌套文档
      • 六、排序和聚合
      • 七、注意事项和性能考虑
      • 八、替代方案
      • 结语

前言

在Elasticsearch的实际应用中,嵌套文档是一个常见的需求,尤其是当我们需要对对象数组进行独立索引和查询时。在Elasticsearch中,这类嵌套结构被称为父子文档,它们能够“彼此独立地进行查询”。实现这一功能主要有两种方式:

  1. 父子文档关系

    • 在Elasticsearch 5.x版本中,这种关系是通过parent-child父子type来实现的,允许一个索引对应多个type。
    • 但从6.x版本开始,由于Elasticsearch不再支持单个索引对应多个type,因此父子索引的实现方式转变为使用Join数据类型。
  2. Nested嵌套类型

    • 这是一种更为紧凑和高效的方式来处理嵌套文档,允许在单个文档中直接嵌套其他文档,并保持它们之间的关联性,便于进行复杂的查询操作。

简而言之,Elasticsearch提供了灵活的方式来处理嵌套文档和父子文档关系,以满足不同场景下的查询需求。

一、嵌套类型作用

(1)Nested类型:Nested是Elasticsearch中一种特殊的数据类型,专为处理对象数组设计。它允许对数组中的每个对象进行独立的索引和查询,保持对象内部字段间的关联性。

(2)对象数组的默认存储方式

Elasticsearch内部并不直接支持对象的层次结构,而是将对象层次结构扁平化为一个字段名和字段值的简单列表。这种处理方式可能导致数据关联性的丢失。例如,考虑以下文档:

PUT user/user_info/1
{"group": "man","userName": [ {"first": "张","last": "三"},{"first": "李","last": "四"}]
}

如果我们尝试查询first为“张”且last为“四”的数据,按照常理,这样的数据应该不存在。然而,使用以下查询:

GET /user/user_info/_search
{"query": {"bool": {"must": [{"match": {"userName.first": "张"}},{"match": {"userName.last": "四"}}]}}
}

意外地,我们可能会得到结果。这是因为Lucene(Elasticsearch的底层库)没有内部对象的概念,它将内部对象扁平化处理了。在内部,文档实际上被存储为:

{"group": "man","userName.first": ["张", "李"],"userName.last": ["三", "四"]
}

可以看到,userName.firstuserName.last被扁平化为多值字段,它们之间的关联性已经丢失,因此查询结果可能不符合我们的预期。

(3)使用Nested类型解决问题

为了解决上述问题并保持对象内部字段的关联性,我们可以使用Nested类型。通过Nested类型,Elasticsearch能够正确地处理对象数组,使得我们可以对数组中的每个对象进行独立的查询,从而得到准确的结果。

二、nested 类型与object 类型的不同点

嵌套对象(nested object)相较于普通的对象(object)类型,在Elasticsearch中具有独特的特点和功能。以下是它们之间的主要差异:

嵌套对象(nested object)

  • 概述:嵌套类型是对象数据类型的一个特定版本,专为对象数组设计,使得数组中的每个对象都可以被独立地索引和查询。

  • 特征

    • 字段相关性的保留:每个嵌套对象被独立索引后,能够确保对象中字段间的相关性不被破坏。这意味着在进行查询时,可以精确地找到满足条件的特定嵌套对象。
    • 查询效率:由于嵌套文档直接内嵌在父文档中,查询嵌套文档与根文档的组合成本相对较低,从而保证了查询的高效性,其速度与单独存储文档几乎无异。
    • 数据的隐藏与访问:嵌套文档在内部是隐藏存储的,无法直接访问。若需对嵌套对象进行修改(增加、删除或更改),则必须对整个父文档进行重新索引。值得注意的是,查询时返回的是包含匹配嵌套对象的整个父文档,而非单独的嵌套文档。

相比之下,**普通的对象(object)**类型在处理对象数组时,默认会将对象内部的字段扁平化,这可能导致字段间的关联性丢失。因此,在进行复杂查询时,可能无法精确地定位到对象数组中的特定对象,从而影响查询结果的准确性。

总的来说,嵌套对象通过保留字段间的相关性和提供高效的查询性能,为处理对象数组提供了一种更为精确和灵活的方式。然而,这也带来了数据访问和修改的某些限制,需要权衡利弊后做出选择。

三、嵌套类型的定义

在Elasticsearch中,嵌套类型主要用于处理包含多个内部对象的字段,这些内部对象通常与外部对象相关联。通过在映射(mapping)中定义一个字段为嵌套类型,我们可以对这些关联数据进行有效的查询。

嵌套类型定义:

PUT /my_index
{"mappings": {"properties": {"user": {"type": "nested", "properties": {"name": {"type": "text"},"age": {"type": "integer"}}}}}
}

user字段被定义为嵌套类型,包含nameage两个子字段。这样的定义允许存储和查询多个与用户相关的内部对象。

四、索引嵌套文档

一旦定义了嵌套索引,就可以开始索引包含嵌套字段的文档了。以下是一个栗子:

PUT /my_index/_doc/1
{"user": [{"name": "Alice","age": 25},{"name": "Bob","age": 30}]
}

user字段是一个数组,每个数组元素都是一个对象,包含nameage字段。这种数据结构允许我们存储多个与用户相关的记录,并保持它们之间的关联性。

五、查询嵌套文档

查询嵌套文档时,需要使用特定的nested查询语法。以下是一个查询名字为"Alice"的用户的dsl:

GET /my_index/_search
{"query": {"nested": {"path": "user","query": {"match": {"user.name": "Alice"}}}}
}

这个查询将返回所有包含名字为"Alice"的用户的文档。通过nested查询,可以精确地定位到嵌套字段中的特定数据,并进行高效的检索。

六、排序和聚合

除了基本的查询功能外,Elasticsearch还允许我们对嵌套字段进行排序和聚合操作。然而,由于嵌套字段的特殊性,这些操作可能比常规字段更复杂。需要使用特定的nested排序和聚合语法来实现这些功能。

例如,如果我们想按照用户的年龄进行排序,可以使用以下查询:

GET /my_index/_search
{"sort": [{"user.age": {"order": "asc","nested": {"path": "user"}}}],"query": {"match_all": {}}
}

这个查询将按照用户的年龄进行升序排序,并返回所有文档。通过使用nested排序语法,我们可以确保正确地处理嵌套字段中的数据。

类似地,也可以对嵌套字段进行聚合操作,以获取有关数据的统计信息。例如,我们可以计算用户的平均年龄:

GET /my_index/_search
{"size": 0,"aggs": {"nested_users": {"nested": {"path": "user"},"aggs": {"average_age": {"avg": {"field": "user.age"}}}}}
}

这个聚合查询将计算所有用户的平均年龄,并返回结果。通过使用nested聚合语法,我们可以对嵌套字段中的数据执行复杂的统计分析。

七、注意事项和性能考虑

尽管嵌套索引在Elasticsearch中非常有用,但也有一些需要注意的事项和性能考虑因素:

  1. 性能影响:嵌套字段会增加索引的复杂性,并可能影响性能。由于嵌套字段需要额外的存储空间来维护内部对象之间的关系,因此索引和查询这些字段可能会比常规字段更耗时。
  2. 更新开销:当你更新嵌套文档中的某个内部对象时,整个嵌套数组都会被重新索引。这可能会导致性能下降,特别是在处理大量数据时。因此,在设计数据模型时需要谨慎考虑更新的频率和影响。
  3. 查询复杂性:对嵌套字段进行查询可能比常规字段更复杂。你需要使用特定的nested查询语法,并确保正确地引用嵌套路径和字段名。此外,过于复杂的查询可能会导致性能下降。

八、替代方案

如果你发现嵌套字段导致性能问题或查询复杂性增加,可以考虑以下替代方案:
在这里插入图片描述

  1. 数据模型扁平化:尝试将数据模型扁平化,将嵌套字段拆分为单独的字段或文档。这样可以简化查询和索引过程,但可能会增加数据冗余和存储开销。

  2. 父子文档关系:Elasticsearch支持父子文档关系,允许你定义文档之间的层次结构。这种关系可以用于处理具有一对多关系的数据,并提供更灵活的查询和聚合功能。然而,父子文档关系也可能带来一些性能上的考虑因素。

在这里插入图片描述

  1. 应用逻辑管理:另一种方法是将关联数据存储在单独的索引中,并使用应用程序逻辑来管理和查询这些数据之间的关系。这种方法可以提供更大的灵活性,但需要在应用程序中实现额外的逻辑来处理关联数据。

结语

Elasticsearch中的嵌套索引是一个强大的功能,允许你处理具有一对多关系的复杂数据结构。通过正确使用嵌套索引、查询、排序和聚合功能,你可以高效地检索和分析关联数据。然而,在使用嵌套索引时需要注意性能影响和查询复杂性,并根据具体情况考虑替代方案来优化数据模型和查询性能。


术因分享而日新,感谢您关注公众号 码到三十五 ,共享更多技术资料。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/800157.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

烧坏两块单片机,不知道原因?

没有看你的原理图,以下是造成烧毁芯片的几个环节: 1. 最大的可能性是你的单片机电机控制输出与电机驱动电路没有隔离。 我的经验,使用STM32控制电机,无论是直流电机脉宽调制,还是步进电机控制,控制电路与…

PCA算法(Principal Component Analysis)揭秘

经典PCA算法 PCA算法的应用包括降维、有损数据压缩、特征抽取、数据可视化等。目前PCA算法有两个通用定义,能殊途同归,得到相同的结果。一方面,我们可以用正交投影来定义PCA,即将数据投影到更低维的线性子空间,也被称…

DolphinScheduler 答案整理,最新面试题

DolphinScheduler的架构设计是怎样的? DolphinScheduler的架构设计主要分为四个层次:前端界面层、API服务层、调度层和执行层。 1、前端界面层: 提供任务的定义、流程的设计、监控等功能,用户通过前端界面操作整个系统。 2、AP…

“揭秘循环购模式:快消品行业复购利器

大家好,我是吴军,来自一家专注于软件开发与商业模式设计的公司。我们的核心业务是构建商城系统,并为各企业提供全方位的商业模式解决方案。至今,我们已经成功打造了超过两百种独特的商业模式,助力众多企业实现商业目标…

C++的并发世界(九)——条件变量

0.绪论——单例模型 单例设计模式是一种常见的设计模式,用于确保某个类只能创建一个实例。由于单例实例是全局唯一的。因此在多线程环境中使用单例模式时,需要考虑线程安全的问题。 1.消费者设计模式 2.condition_variable使用步骤 ①准备好信号量 std::conditio…

Linux系统Docker部署Apache Superset并实现公网实时访问本地数据

文章目录 前言1. 使用Docker部署Apache Superset1.1 第一步安装docker 、docker compose1.2 克隆superset代码到本地并使用docker compose启动 2. 安装cpolar内网穿透,实现公网访问3. 设置固定连接公网地址 前言 Superset是一款由中国知名科技公司开源的“现代化的…

电商API接口告诉你中国跨境电商何以“一路繁花”?

3月31日,启程跨境华东中心仓突破单日自营订单5000单,刷新连云港市跨境进口单日纪录。一季度,连云港市纳入“点点通”公共服务平台统计的跨境电商交易额达2.06亿元,同比增长77.03%。 连云港的“景象”只是中国跨境电商业态蓬勃发展…

管廊ar实景可视化巡检提升安全性

在科技日新月异的今天,智慧工地ar远程巡检交互系统应运而生,它是ar开发公司深圳华锐视点综合运用了AR增强现实、5G通信、人工智能、物联网以及GPS北斗定位等前沿技术,为企业打造了一套全新的数字化巡检解决方案。不仅解放了巡检人员的双手&am…

揭秘IP地理位置:从技术原理到隐私考量

在当今数字化的世界中,IP 地理位置已成为网络定位、广告定向和安全控制等领域的重要工具。然而,对于大多数人来说,IP 地理位置的工作原理以及与隐私之间的关系可能还有些模糊。本文将深入探讨 IP 地理位置的技术原理,以及与隐私相…

Vulnhub:MHZ_CXF: C1F

目录 信息收集 arp-scan nmap nikto WEB web信息收集 dirmap gobuster ssh登录 提权 获得初始立足点 系统信息收集 横向渗透 提权 信息收集 arp-scan ┌──(root㉿ru)-[~/桌面] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:50:56:…

2024Spring> HNU-计算机系统-实验2-datalab-导引

前言 datalab考验对于位运算以及浮点数存储的理解,如果真的肯花时间去搞懂,对计算机系统存储的理解真的能上一个台阶。与课程考试关联性上来说不是很大,但对于IEEE的浮点数表示一定要熟练掌握。 导引 ①实验工具包 要完成的是bits.c中的15个…

解决arcgis发布服务时报错:要素服务需要一个已注册的数据库

发布服务时发生以下报错: 双击列表中的报错项,在弹出的窗口中点击【已注册的数据库】后边的添加按钮,设置注册数据库的名称 点击添加按钮,配置数据库的基本信息(注意:这里配置的数据库连接需要与连接sde数据…

Linux使用宝塔面板部署Discuz结合内网穿透实现公网访问本地论坛

文章目录 前言1.安装基础环境2.一键部署Discuz3.安装cpolar工具4.配置域名访问Discuz5.固定域名公网地址6.配置Discuz论坛 前言 Crossday Discuz! Board(以下简称 Discuz!)是一套通用的社区论坛软件系统,用户可以在不需要任何编程的基础上&a…

鸿蒙实现一种仿小红书首页滑动联动效果

前言: DevEco Studio版本:4.0.0.600 效果描述:通过手指滑动列表,控制位置显示效果为:不论列表在什么位置下滑时下图粉色位置布局显示,手指上滑时下图粉色位置布局隐藏。 效果: 原理分析&…

helm与k8s

文章目录 一、helm二、K8S/K3S1.K8S基本组件1.1 资源对象1.2 核心组件1.3典型的创建 Pod 的流程1.4 Kubernetes 多组件之间的通信原理 2. YAML 文件2.1 Maps2.2 Lists2.3 使用 YAML 创建 Pod2.4 创建 Deployment 3.用 kubeadm 搭建集群环境3.1 环境3.2 镜像(如果你的…

江南大学酒科技馆OLED透明屏项目方案

一、项目概述 本项目旨在为无锡江南大学酒科技馆提供OLED透明屏解决方案,通过安装2x2的OLED透明屏,为参观者带来全新的视觉体验,同时提升酒科技馆的展示效果与科技感。 二、产品选型 本项目选用OLED透明屏,其具有高透明度、高对比…

低温漂、低功耗电压基准,用在精密数据采集系统,供电类设备,工业仪表,测试设备等领域

MSR015/MSR025 是低温漂、低功耗、高精度 CMOS 电压基准, 具有 0.05% 初始精度、低功耗特点。该器件的低输出电压迟滞和低长期输出电压 漂移特性,进一步提高稳定性和系统可靠性。 此外,器件的小尺寸和低运行 电流特性使其非常适合便携…

Leetcode面试经典150_Q122买卖股票的最佳时机II

题目: 给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。 在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。 返回 你能获得的 最大…

达梦备份与恢复

达梦备份与恢复 基础环境 操作系统:Red Hat Enterprise Linux Server release 7.9 (Maipo) 数据库版本:DM Database Server 64 V8 架构:单实例1 设置bak_path路径 --创建备份文件存放目录 su - dmdba mkdir -p /dm8/backup--修改dm.ini 文件…

xgo: golang基于-toolexec实现猴子补丁

注: 转载请注明出处, 原文链接。 概述 在这篇博客中,我将详细介绍 xgo 的实现细节。 如果你不知道,xgo 项目位于 https://github.com/xhd2015/xgo。 它的作用很简单,就是在每个 Go 函数的开头添加拦截器&#xff0…