使用pytorch构建有监督的条件GAN(conditional GAN)网络模型

本文为此系列的第四篇conditional GAN,上一篇为WGAN-GP。文中在无监督的基础上重点讲解作为有监督对比无监督的差异,若有不懂的无监督知识点可以看本系列第一篇。

原理

  • 有条件与无条件
    在这里插入图片描述
    如图投进硬币随机得到一个乒乓球的例子可以看成是一个无监督的GAN,硬币作为输入(noise),出乒乓球的机器作为生成器(generator),生成的乒乓球作为生成器生成的example。
    从这个例子中我们可以知道生成的乒乓球有什么颜色的,因为这些都是我们训练的数据分布,但我们不知道生成的是什么颜色的乒乓球,因为是无监督的。
    在这里插入图片描述
    这个例子中,投掷硬币和输入想要的饮料名称例如红色的苏打水,就会随机投出一瓶选定类型的红色苏打水,而不会投出绿色的雪碧。
    这里不同于上面的例子的是输入中多了一个饮料名称(class),以及输出可以选择想要的类型。这里输入的类别必须在机器给定的类别之内选择不能选择没有给定的类别,就好像我们训练时只训练这些类别生成器就只知道这些类别的东西,其他类别的东西就会出错。
    这样可以选择类别输出的例子就是有监督的。

    注意:这里虽然可以选择类别输出,但不能控制特性输出,比如我们可以选择投出一瓶苏打水,但不能选择固定生产日期的苏打水,或者某品牌的苏打水等,这类可控制特性输出的叫做Controllable
    GAN,在下一篇作讲解。

    在这里插入图片描述

    这就是有条件与无条件的区别,有条件的在训练时数据需要有标签,前向传播时输入生成器还需要多加一个class向量。

  • 输入
    在这里插入图片描述
    如图,在无监督的GAN中,噪声向量也是一维的;在有监督中的GAN中,我们所需的class也要是one-hot形式的一维向量(长度为类别数量)。但我们不是直接将两个向量输入进生成器中,而是合成一个向量。
    在这里插入图片描述
    作为generator的输入如图:
    在这里插入图片描述
    输入进discriminator也是需要有class的信息
    在这里插入图片描述
    在这里插入图片描述
    但是不是想上图这样分开作为两个向量的输入,而是也是合成为一个向量进行输入。但是图像信息作为三维向量,类别信息作为一维向量,就需要进行处理:
    在这里插入图片描述
    类别信息要先转为one-hot形式,然后每个类别处理成一个image_height * image_width的二维向量作为一个channel与图像信息进行concat。

代码

model.py

from torch import nnclass Generator(nn.Module):def __init__(self, input_dim=10, im_chan=1, hidden_dim=64):super(Generator, self).__init__()self.input_dim = input_dim# Build the neural networkself.gen = nn.Sequential(self.make_gen_block(input_dim, hidden_dim * 4),self.make_gen_block(hidden_dim * 4, hidden_dim * 2, kernel_size=4, stride=1),self.make_gen_block(hidden_dim * 2, hidden_dim),self.make_gen_block(hidden_dim, im_chan, kernel_size=4, final_layer=True),)def make_gen_block(self, input_channels, output_channels, kernel_size=3, stride=2, final_layer=False):if not final_layer:return nn.Sequential(nn.ConvTranspose2d(input_channels, output_channels, kernel_size, stride),nn.BatchNorm2d(output_channels),nn.ReLU(inplace=True),)else:return nn.Sequential(nn.ConvTranspose2d(input_channels, output_channels, kernel_size, stride),nn.Tanh(),)def forward(self, noise):x = noise.view(len(noise), self.input_dim, 1, 1)return self.gen(x)class Discriminator(nn.Module):def __init__(self, im_chan=1, hidden_dim=64):super(Discriminator, self).__init__()self.disc = nn.Sequential(self.make_disc_block(im_chan, hidden_dim),self.make_disc_block(hidden_dim, hidden_dim * 2),self.make_disc_block(hidden_dim * 2, 1, final_layer=True),)def make_disc_block(self, input_channels, output_channels, kernel_size=4, stride=2, final_layer=False):if not final_layer:return nn.Sequential(nn.Conv2d(input_channels, output_channels, kernel_size, stride),nn.BatchNorm2d(output_channels),nn.LeakyReLU(0.2, inplace=True),)else:return nn.Sequential(nn.Conv2d(input_channels, output_channels, kernel_size, stride),)def forward(self, image):disc_pred = self.disc(image)return disc_pred.view(len(disc_pred), -1)

train.py

import torch
from torch import nn
from tqdm.auto import tqdm
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
import torch.nn.functional as F
import matplotlib.pyplot as plt
from model import *
torch.manual_seed(0) # Set for our testing purposes, please do not change!def show_tensor_images(image_tensor, num_images=25, size=(1, 28, 28), nrow=5, show=True):'''Function for visualizing images: Given a tensor of images, number of images, andsize per image, plots and prints the images in an uniform grid.'''image_tensor = (image_tensor + 1) / 2image_unflat = image_tensor.detach().cpu()image_grid = make_grid(image_unflat[:num_images], nrow=nrow)plt.imshow(image_grid.permute(1, 2, 0).squeeze())if show:plt.show()def get_noise(n_samples, input_dim, device='cpu'):'''Function for creating noise vectors: Given the dimensions (n_samples, input_dim)creates a tensor of that shape filled with random numbers from the normal distribution.Parameters:n_samples: the number of samples to generate, a scalarinput_dim: the dimension of the input vector, a scalardevice: the device type'''return torch.randn(n_samples, input_dim, device=device)def get_one_hot_labels(labels, n_classes):return F.one_hot(labels,n_classes)def combine_vectors(x, y):combined = torch.cat((x.float(),y.float()), 1)return combinedmnist_shape = (1, 28, 28)
n_classes = 10criterion = nn.BCEWithLogitsLoss()
n_epochs = 200
z_dim = 64
display_step = 500
batch_size = 128
lr = 0.0002
device = 'cuda'transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,)),
])dataloader = DataLoader(MNIST('.', download=False, transform=transform),batch_size=batch_size,shuffle=True)def get_input_dimensions(z_dim, mnist_shape, n_classes):generator_input_dim = z_dim + n_classesdiscriminator_im_chan = mnist_shape[0] + n_classesreturn generator_input_dim, discriminator_im_changenerator_input_dim, discriminator_im_chan = get_input_dimensions(z_dim, mnist_shape, n_classes)gen = Generator(input_dim=generator_input_dim).to(device)
gen_opt = torch.optim.Adam(gen.parameters(), lr=lr)
disc = Discriminator(im_chan=discriminator_im_chan).to(device)
disc_opt = torch.optim.Adam(disc.parameters(), lr=lr)def weights_init(m):if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):torch.nn.init.normal_(m.weight, 0.0, 0.02)if isinstance(m, nn.BatchNorm2d):torch.nn.init.normal_(m.weight, 0.0, 0.02)torch.nn.init.constant_(m.bias, 0)
gen = gen.apply(weights_init)
disc = disc.apply(weights_init)cur_step = 0
generator_losses = []
discriminator_losses = []# UNIT TEST NOTE: Initializations needed for grading
noise_and_labels = False
fake = Falsefake_image_and_labels = False
real_image_and_labels = False
disc_fake_pred = False
disc_real_pred = Falsebest_gen_loss = float('inf')
last_gen_loss = 0for epoch in range(n_epochs):# Dataloader returns the batches and the labelsfor real, labels in tqdm(dataloader):cur_batch_size = len(real)# Flatten the batch of real images from the datasetreal = real.to(device)one_hot_labels = get_one_hot_labels(labels.to(device), n_classes)image_one_hot_labels = one_hot_labels[:, :, None, None]image_one_hot_labels = image_one_hot_labels.repeat(1, 1, mnist_shape[1], mnist_shape[2])### Update discriminator #### Zero out the discriminator gradientsdisc_opt.zero_grad()# Get noise corresponding to the current batch_sizefake_noise = get_noise(cur_batch_size, z_dim, device=device)noise_and_labels = combine_vectors(fake_noise, one_hot_labels)fake = gen(noise_and_labels)fake_image_and_labels = combine_vectors(fake, image_one_hot_labels)real_image_and_labels = combine_vectors(real, image_one_hot_labels)disc_fake_pred = disc(fake_image_and_labels.detach())disc_real_pred = disc(real_image_and_labels)disc_fake_loss = criterion(disc_fake_pred, torch.zeros_like(disc_fake_pred))disc_real_loss = criterion(disc_real_pred, torch.ones_like(disc_real_pred))disc_loss = (disc_fake_loss + disc_real_loss) / 2disc_loss.backward(retain_graph=True)disc_opt.step()# Keep track of the average discriminator lossdiscriminator_losses += [disc_loss.item()]### Update generator #### Zero out the generator gradientsgen_opt.zero_grad()fake_image_and_labels = combine_vectors(fake, image_one_hot_labels)# This will error if you didn't concatenate your labels to your image correctlydisc_fake_pred = disc(fake_image_and_labels)gen_loss = criterion(disc_fake_pred, torch.ones_like(disc_fake_pred))gen_loss.backward()gen_opt.step()# Keep track of the generator lossesgenerator_losses += [gen_loss.item()]if cur_step % display_step == 0 and cur_step > 0:gen_mean = sum(generator_losses[-display_step:]) / display_stepdisc_mean = sum(discriminator_losses[-display_step:]) / display_stepprint(f"Step {cur_step}: Generator loss: {gen_mean}, discriminator loss: {disc_mean}")show_tensor_images(fake)show_tensor_images(real)step_bins = 20x_axis = sorted([i * step_bins for i in range(len(generator_losses) // step_bins)] * step_bins)num_examples = (len(generator_losses) // step_bins) * step_binsplt.plot(range(num_examples // step_bins),torch.Tensor(generator_losses[:num_examples]).view(-1, step_bins).mean(1),label="Generator Loss")plt.plot(range(num_examples // step_bins),torch.Tensor(discriminator_losses[:num_examples]).view(-1, step_bins).mean(1),label="Discriminator Loss")plt.legend()plt.show()elif cur_step == 0:print("Congratulations! If you've gotten here, it's working. Please let this train until you're happy with how the generated numbers look, and then go on to the exploration!")cur_step += 1# Save generator modelif gen_loss < best_gen_loss:best_gen_loss = gen_losstorch.save(gen.state_dict(), 'best_generator.pth')last_gen_loss = gen_losstorch.save(gen.state_dict(), 'last_generator.pth')# test
import math
gen = gen.eval()checkpoint = torch.load('best_generator.pth')
gen.load_state_dict(checkpoint)
gen.to(device)n_interpolation = 9 # Choose the interpolation: how many intermediate images you want + 2 (for the start and end image)
interpolation_noise = get_noise(1, z_dim, device=device).repeat(n_interpolation, 1)def interpolate_class(first_number, second_number):first_label = get_one_hot_labels(torch.Tensor([first_number]).long(), n_classes)second_label = get_one_hot_labels(torch.Tensor([second_number]).long(), n_classes)# Calculate the interpolation vector between the two labelspercent_second_label = torch.linspace(0, 1, n_interpolation)[:, None]interpolation_labels = first_label * (1 - percent_second_label) + second_label * percent_second_label# Combine the noise and the labelsnoise_and_labels = combine_vectors(interpolation_noise, interpolation_labels.to(device))fake = gen(noise_and_labels)show_tensor_images(fake, num_images=n_interpolation, nrow=int(math.sqrt(n_interpolation)), show=False)start_plot_number = 1 # Choose the start digit
end_plot_number = 5 # Choose the end digitplt.figure(figsize=(8, 8))
interpolate_class(start_plot_number, end_plot_number)
_ = plt.axis('off')plot_numbers = [2, 3, 4, 5, 7]
n_numbers = len(plot_numbers)
plt.figure(figsize=(8, 8))
for i, first_plot_number in enumerate(plot_numbers):for j, second_plot_number in enumerate(plot_numbers):plt.subplot(n_numbers, n_numbers, i * n_numbers + j + 1)interpolate_class(first_plot_number, second_plot_number)plt.axis('off')
plt.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0.1, wspace=0)
plt.show()
plt.close()n_interpolation = 9 # How many intermediate images you want + 2 (for the start and end image)# This time you're interpolating between the noise instead of the labels
interpolation_label = get_one_hot_labels(torch.Tensor([5]).long(), n_classes).repeat(n_interpolation, 1).float()def interpolate_noise(first_noise, second_noise):# This time you're interpolating between the noise instead of the labelspercent_first_noise = torch.linspace(0, 1, n_interpolation)[:, None].to(device)interpolation_noise = first_noise * percent_first_noise + second_noise * (1 - percent_first_noise)# Combine the noise and the labels againnoise_and_labels = combine_vectors(interpolation_noise, interpolation_label.to(device))fake = gen(noise_and_labels)show_tensor_images(fake, num_images=n_interpolation, nrow=int(math.sqrt(n_interpolation)), show=False)n_noise = 5 # Choose the number of noise examples in the grid
plot_noises = [get_noise(1, z_dim, device=device) for i in range(n_noise)]
plt.figure(figsize=(8, 8))
for i, first_plot_noise in enumerate(plot_noises):for j, second_plot_noise in enumerate(plot_noises):plt.subplot(n_noise, n_noise, i * n_noise + j + 1)interpolate_noise(first_plot_noise, second_plot_noise)plt.axis('off')
plt.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0.1, wspace=0)
plt.show()
plt.close()

代码解析

  • 网络模型模块没啥可说的,就是生成器和鉴别器的输入channel改变了而已。
  • 一个是将类别信息转成one-hot形式的编码,一个是将两个向量concat成一个向量。
    在这里插入图片描述

比如类别为1,one-hot形式的编码就是第二个位置为1,其余位置为0,长度为类别的数量:
在这里插入图片描述

  • 计算生成器和鉴别器的输入向量的channel,生成器的输入channel为随机噪声的channel+类别数量,鉴别器的channel为生成图片的channel+类别数量。
    在这里插入图片描述
  • 对标签信息进行处理成输入discriminator的格式。首先对label进行one-hot格式处理,然后在最后扩展两个维度便于卷积操作,最后将一个one-hot向量中的每个类别(单个值)都复制成宽高与图像一致的二维向量。
    在这里插入图片描述
    首先我们可以打印出labels及其shape,可以看到有batch_size个标签,且是一维的。
    在这里插入图片描述
    然后打印出其one-hot向量及其shape。
    在这里插入图片描述
    然后打印出扩展维度后的向量及其shape,本来每个label的shape为[10],在最后插入两个维度后变成[10,1,1],相对于进行了两次unsqueeze(-1)操作。
    在这里插入图片描述
    在这里插入图片描述
    然后打印出复制操作后的向量及其shape,将每个label的shape从[10,1,1]变为[10,28,28]。这样就可以知道.repeat()函数中第一个参数1表示:
    • 在第一个维度(批量大小维度)上不进行重复,即不改变批量大小;
    • 第二个参数1表示在第二个维度(类别数维度)上不进行重复,即不改变类别数;
    • mnist_shape[1]表示在高度维度上重复的次数,即重复到与 MNIST图像的高度相匹配;
    • mnist_shape[2]表示在宽度维度上重复的次数,即重复到与 MNIST图像的宽度相匹配。
      在这里插入图片描述
      在这里插入图片描述
  • 显示中间过程模块如下,如果不想看中间过程或者嫌弃一直一个一个关掉窗口太麻烦的话可以直接注释掉这段。
    在这里插入图片描述
  • 到此为止训练部分都已经结束了,训练完保存了best模型和last模型在当前文件夹中。下面的test部分开始是对结果的检验。
    在这里插入图片描述
    这个模块是在两个不同的模式中进行插值,来查看两个模式生成的中间结果。
    • 首先.eval()是PyTorch中模型在评估模式下进行使用的,目的是为了在测试阶段时取消某些层(例如以下两个层)对输出结果的随机性的行为,从而获得更加稳定和可靠的预测结果。
      • 关闭Dropout层。在训练过程中,Dropout层会随机丢弃一部分神经元,起到过拟合的作用。而在评估过程中,为了保证每次的输出不具有随机性,Dropout 层通常会被关闭,使得所有神经元都参与到前向传播过程中。
      • 冻结Batch Normalization层。在训练过程中,BN层会根据每个批次的统计信息对输入进行标准化处理。而在评估过程中,也是因为为了保证每次的输出不具有随机性,BN层通常会被冻结,即使用训练时得到的均值方差来进行标准化。
    • 可以改变n_interpolation的值来查看两个结果的中间过程,如代码中赋值为9,有2个是结果其余7个是中间过程。具体实现方式是:
      • 首先使用torch.linspace函数生成从0到1的等间距的n_interpolation个数据点,然后扩展一个dimension,给每个值单独括起来。生成的这些值用于控制两个标签之间的插值比例。
      • first_label * (1 - percent_second_label) + second_label * percent_second_label然后通过加权的方式计算两个标签之间的插值标签。
      • 最后就是将得到的插值标签与随机噪声结合后送入generator中得到生成结果。
        在这里插入图片描述
  • 我们也可以同时可视化一组数字标签之间的插值结果。
    在这里插入图片描述
    这就是在给定的一组标签之间两两进行插值,得到最早的可视化结果。
    在这里插入图片描述
  • 上面是输入不同的class查看测试结果。下面测试一下保持class不变改变随机向量的结果。
    在这里插入图片描述
    插值原理与上面类似,只不过上面的中间过程是标签插值,这里是噪声插值,生成的插值比例是与随机噪声进行加权相乘计算。本代码这里是固定用数字5作为固定标签,也可以自己改变interpolation_label查看别的标签的结果。
    在这里插入图片描述

下一篇可控制生成GAN。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/798883.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从0到1搭建文档库——sphinx + git + read the docs

sphinx git read the docs 目录 一、sphinx 1 sphinx的安装 2 本地构建文件框架 1&#xff09;创建基本框架&#xff08;生成index.rst &#xff1b;conf.py&#xff09; conf.py默认内容 index.rst默认内容 2&#xff09;生成页面&#xff08;Windows系统下&#xf…

实战webSocket压测(三)Jmeter真实接口联调

背景&#xff1a; 接口地址为&#xff1a;ws://sunlei.demo 接口说明&#xff1a;websocket接口&#xff0c;首次连接&#xff0c;通过Text请求设置开启标志&#xff0c;然后通过wav文件流传输&#xff0c;达到后端服务可以根据传输信息进行解析满足指定标准后&#xff0c;web…

锂电池算法学习集合---基于matlab/simulink的电池参数辨识、充放电、SOC估计算法。

整理了锂电池的多种算法合集&#xff1a;涵盖电动汽车Simulink模型、电动汽车动力电池SOC估算模型、动力电池及电池管理系统BMS。 电动汽车动力电池SOC估算模型含有:电池参数辨识模型、电池的充放电数据、电池手册、卡尔曼滤波电池SOC文献、卡尔曼滤波算法的锂电池SOC估算模型…

C++ | Leetcode C++题解之第16题最接近的三数之和

题目&#xff1a; 题解&#xff1a; class Solution { public:int threeSumClosest(vector<int>& nums, int target) {sort(nums.begin(), nums.end());int n nums.size();int best 1e7;// 根据差值的绝对值来更新答案auto update [&](int cur) {if (abs(cur…

Word wrap在计算机代表的含义(自动换行)

“Word wrap”是一个计算机术语&#xff0c;用于描述文本处理器在内容超过容器边界时自动将超出部分转移到下一行的功能。在多种编程语言和文本编辑工具中&#xff0c;都有实现这一功能的函数或选项。 在编程中&#xff0c;例如某些编程语言中的wordwrap函数&#xff0c;能够按…

甘特图/横道图制作技巧 - 任务组

在甘特图中通过合理的任务分组可以让项目更加清晰&#xff0c;修改也更方便。 列如下面的甘特图一眼不太容易看清楚整体的进度。或者需要把所有的任务整体的延迟或者提前只能这样一个一个的任务调整&#xff0c;就比较麻烦。 通过给任务分组&#xff0c;看这上面整体的进度就…

【运输层】传输控制协议 TCP

目录 1、传输控制协议 TCP 概述 &#xff08;1&#xff09;TCP 的特点 &#xff08;2&#xff09;TCP 连接中的套接字概念 2、可靠传输的工作原理 &#xff08;1&#xff09;停止等待协议 &#xff08;2&#xff09;连续ARQ协议 3、TCP 报文段的首部格式 &#xff08;1…

Sundar Pichai 谈巨型公司创新挑战及他今年感到兴奋的事物

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

10 Python进阶:MongoDB

MongoDb介绍 MongoDB是一个基于分布式架构的文档数据库&#xff0c;它使用JSON样式的数据存储&#xff0c;支持动态查询&#xff0c;完全索引。MongoDB是NoSQL数据库的一种&#xff0c;主要用于处理大型、半结构化或无结构化的数据。以下是MongoDB数据库的一些关键特点和优势&a…

路由器对数据包的处理过程分析笔记

虽然TCP-IP协议中传输数据会在各个路由器再次经过物理层、链路层、网络层的解封装、加工、封装、转发&#xff0c;但是对于两个主机间的运输层&#xff0c;在逻辑上&#xff0c;应用进程是直接通信的。 路由器主要工作在网络层&#xff0c;但它也涉及到物理层和链路层的一些功能…

Android详细介绍POI进行Word操作(小白可进)

poi-tl是一个基于Apache POI的Word模板引擎&#xff0c;也是一个免费开源的Java类库&#xff0c;你可以非常方便的加入到你的项目中&#xff0c;并且拥有着让人喜悦的特性。 一、使用poi前准备 1.导入依赖&#xff1a; 亲手测过下面Android导入POI依赖的方法可用 放入这个 …

计算机视觉——基于深度学习检测监控视频发生异常事件的算法实现

1. 简介 视频异常检测&#xff08;VAD&#xff09;是一门旨在自动化监控视频分析的技术&#xff0c;其核心目标是利用计算机视觉系统来监测监控摄像头的画面&#xff0c;并自动检测其中的异常或非常规活动。随着监控摄像头在各种场合的广泛应用&#xff0c;人工监视已经变得不…

三防笔记本丨工业笔记本电脑丨助力测绘行业的数字化转型

测绘行业测绘行业一直是高度技术化的领域&#xff0c;其重要性在于为建设、规划和资源管理提供准确的地理数据。然而&#xff0c;随着技术的发展&#xff0c;传统的测绘方法已经难以满足对数据精度和实时性的要求。因此&#xff0c;测绘行业正逐渐向数字化转型&#xff0c;采用…

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之四 简单视频倒放效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之四 简单视频倒放效果 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之四 简单视频倒放效果 一、简单介绍 二、简单视频倒放效果实现原理 三、简单视频倒放效果案例实现…

uniapp vue2 时钟 循环定时器

效果展示&#xff1a; 时钟 写在前面&#xff1a;vue2有this指向&#xff0c;没有箭头函数 实验操作&#xff1a;封装一个时钟组件 uniapp vue2 封装一个时钟组件 核心代码&#xff1a; this指向的错误代码&#xff0c;在下&#xff1a; start() { this.myTimer setInterval(…

我关注的测试仪表厂商之Sifos,PoE测试

#最近看看行业各个厂商的网站&#xff0c;看看他们都在做什么# 先从Sifos开始&#xff0c;一直觉得这是家很特别的公司&#xff0c;在PoE测试这块是个无敌的存在。之前在上一家台资测试仪表公司的时候&#xff0c;也有推出过类似的基于产线验证的解决方案&#xff0c;最后因为…

3D桌面端可视化引擎HOOPS Visualize如何实现3D应用快速开发?

HOOPS Visualize是一个开发平台&#xff0c;可实现高性能、跨平台3D工程应用程序的快速开发。一些主要功能包括&#xff1a; 高性能、以工程为中心的可视化&#xff0c;使用高度优化的OpenGL或DirectX驱动程序来充分利用可用的图形硬件线程安全的C和C#接口&#xff0c;内部利用…

零信任安全模型:构建未来数字世界的安全基石

在数字化转型的浪潮中&#xff0c;云原生技术已成为推动企业创新和灵活性的关键力量&#x1f4a1;。然而&#xff0c;随着技术的进步和应用的广泛&#xff0c;网络安全威胁也日益严峻&#x1f513;&#xff0c;传统的网络安全模型已经难以应对复杂多变的网络环境。在这样的背景…

flutter升级3.10.6Xcode构建报错

flutter sdk 升级Xcode报错收集&#xff0c;错误信息如下&#xff1a; Error (Xcode): Cycle inside Runner; building could produce unreliable results.没问题版本信息&#xff1a; Xcode&#xff1a;15.3 flutter sdk &#xff1a;3.7.12 dart sdk&#xff1a;2.19.6 …

ThinkPHP审计(2) Thinkphp反序列化链5.1.X原理分析从0编写POC

ThinkPHP审计(2) Thinkphp反序列化链子5.1.X原理分析&从0编写POC 文章目录 ThinkPHP审计(2) Thinkphp反序列化链子5.1.X原理分析&从0编写POC动态调试环境配置Thinkphp反序列化链5.1.X原理分析一.实现任意文件删除二.实现任意命令执行真正的难点 Thinkphp反序列化链5.1.…