1.树型结构
1.1树型结构的概念
树是一种 非线性 的数据结构,它是由 n ( n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看 起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
1.2树型结构的特点
1.有一个特殊的结点,称为根结点,根结点没有前驱结点
2.除根结点外,其余结点被分成 M(M > 0) 个互不相交的集合 T1 、 T2 、 ...... 、 Tm ,其中每一个集合 Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有 0 个或多个后继3.树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
2.树
2.1树的概念
在了解了树型结构之后,我们来讲下树的相关知识
结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
2.2树与非树
如何判断该结构是否为树呢?
这里我们就要根据树的特点来判断:
1.子树是不相交的
2.除了根节点外,每个节点有且仅有一个父节点
3.一颗N个节点的树有N-1条边
2.3树的表示形式
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法
static class TreeNode{public char val;public TreeNode left;//左孩子public TreeNode right;//有孩子public TreeNode(char val){this.val=val;}}
3.二叉树
3.1二叉树的概念
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
根据上图,我们可以看出
1.二叉树不存在度大于2的节点
2.二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
3.2特殊的二叉树
1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。
2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。
要注意的是满二叉树是一种特殊的完全二叉树。
3.3二叉树的性质
1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)(i>0)个结点
2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2^k-1 (k>=0)
3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
4. 具有n个结点的完全二叉树的深度k为log2(n+1)上取整
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子
3.4二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式
//孩子表示法class Node {int val;//数据域Node left;//左孩子的引用,常常代表左孩子为根的整棵左子树Node right;//右孩子的引用,常常代表右孩子为根的整棵右子树}//孩子双亲表示法class Node {int val; // 数据域Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树Node parent; // 当前节点的根节点}
根据该图,我们发现可以通过递归的方式实现二叉树
3.5二叉树的遍历
遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。
如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式
NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点
3.5.1前中后序遍历
//前序遍历public void preOrder(TreeNode root){if(root==null){return;}System.out.println(root.val+" ");//递归遍历左子树preOrder(root.left);//递归遍历右子树preOrder(root.right);}//中序遍历public void inOrder(TreeNode root){if(root==null){return;}inOrder(root.left);System.out.println(root.val+" ");inOrder(root.right);}//后序遍历public void postOrder(TreeNode root){if(root==null){return;}postOrder(root.left);postOrder(root.right);System.out.println(root.val+" ");}
3.5.2层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
这里对二叉树的认识就讲到这里,下篇文章将继续对二叉树讲解相关的知识
如果上述内容对您有帮助,希望给个三连谢谢!