应用性能分析工具CPU Profiler

简介

本文档介绍应用性能分析工具CPU Profiler的使用方法,该工具为开发者提供性能采样分析手段,可在不插桩情况下获取调用栈上各层函数的执行时间,并展示在时间轴上。

开发者可通过该工具查看TS/JS代码及NAPI代码执行过程中的时序及耗时情况,进而发现热点函数及性能瓶颈,进行应用层性能优化。

性能数据分析视图说明

性能数据可以通过DevEco Studio > Profiler > Time > ArkTS CallstackChrome浏览器 > JavaScript Profiler进行展示和分析。前者提供Callstack泳道图、Details图;后者提供时序火焰图(Chart)、比重图(Heavy)、树形图(Tree)。

DevEco Studio Profiler视图

说明:

该工具自DevEco Studio 4.0 beta2之后开始提供。请各位开发者将DevEco Studio更新至最新版本,以使用该工具。

ArkTS Callstack泳道图

泳道图展示了时间轴上每个时刻正在执行的函数或者正处于的阶段,对于函数来讲可理解为每个时刻调用栈的栈顶。可以通过 Ctrl+鼠标滚轮 任意放大和缩小鼠标所在位置的某一段。

NAPI方法在泳道图上被特殊标记为黄色,此类方法会调用到Native代码,在Details图中可查看到该类方法的Native调用栈。

图1 ArkTS Callstack泳道图

Details图

在泳道图上点击任意时间条,或者选定一个起始和终止范围,工具将在下方Details图中显示此时间条代表的函数或者此范围内所有函数的完整调用链,右侧Heaviest Stack视图展示该范围内耗时最长的调用链。

图2 阶段耗时详情示意图

从上图中我们不仅可以看到JS调用栈,还可以看到NAPI接口Native实现部分的C++调用栈。

对于JS方法及开发者自定义的Native方法,双击Details中该方法所在行可跳转到代码行。

说明:

当前行号尚未完全对齐函数头行号,实际为函数内部可执行代码的第一行。

Chrome浏览器JavaScript Profiler工具视图

Chrome浏览器JavaScript Profiler工具默认调用V8引擎提供的Profiler工具,可抓取网页JS性能数据。本文提供的TS/JS CPU Profiler工具的性能数据(.cpuprofile)格式与其兼容,可直接导入到该工具进行分析。

在 Chrome 浏览器上打开JavaScript Profiler工具并加载数据文件的操作步骤为:F12 > More tools > JavaScript Profiler > Load

操作步骤示意图如下所示:

图3 JavaScript Profiler工具入口

图4 加载cpuprofile文件

如果找不到此工具,可勾选下图选项后F12重新打开。

图5 启用JavaScript Profiler功能

该工具可将性能分析数据展示在三种视图:时序火焰图(Chart)、比重图(Heavy)、树形图(Tree)。

时序火焰图(Chart)

图6 时序火焰图(Chart)总览

该视图从时间维度展示应用运行过程中每个时刻的函数调用栈,最为直观,时间轴0时刻代表开始采集,可通过鼠标滚轮放大局部。

图7 时序火焰图(Chart)详情

可将鼠标放在某一函数上,展示该函数详细信息,详情中包含以下几个字段:

  • Name:格式为“函数名(标签)”。函数名表示TS/JS代码函数名,标签信息代表函数类型,具体可见 函数名标签tag的相关说明。

  • Self Time:以毫秒(ms)为单位。表示该函数本次调用过程中,除去调用下一级函数所消耗时间后的自身执行耗时。计算方法为该函数本次调用的总耗时减去该函数本次调用下一级所有函数的总时间。

  • Total Time:以毫秒(ms)为单位。表示该函数本次调用过程中的总耗时,包含调用下一级函数所消耗的时间。

  • URL:格式为“文件路径:行号”。表示该函数在TS/JS代码中的具体位置,包含所在文件及在该文件中的具体行号,该行号为函数头所在行号。

    说明:

    • 当前还存在部分函数URL并未进行sourcemap转换的情况,这部分函数的URL在build目录下。

    • 当前行号尚未完全对齐函数头行号,实际为函数内部可执行代码的第一行。

  • Aggregated self time:以毫秒(ms)为单位。表示该函数在整个采样过程中历次调用的Self Time的总和(仅限上级调用栈一致的多次调用求和)。

  • Aggregated total time:以毫秒(ms)为单位。表示该函数在整个采样过程中历次调用的Total Time的总和(仅限上级调用栈一致的多次调用求和)。

比重图(Heavy)

比重图列出了所有调用栈的栈顶,可以理解为时序火焰图从下往上看,看到的首先是调用链末端函数,以及各自的Self Time时间,将比重图的所有Self Time的比例相加结果为100%。

具体到某一个函数,点击箭头展开,可以看到调用该函数的完整调用链,可能包含多条调用链,指代这些调用链最终都会调用到该函数。

该图表可按照Self Time的大小排序,排在最前面的代表对应函数的Self Time耗时最长,可以作为重点进行分析。

如下两图分别为Chrome浏览器比重图(Heavy)和VSCode比重图(Heavy)对同一.cpuprofile文件的解析结果。不难发现,两种解析方式的时间有所差异,该差异是由计算方式的不同导致的。

Chrome浏览器比重图(Heavy)的时间并不是实际时间,而是通过函数的命中率乘以总时间得到;而VSCode比重图(Heavy)的时间是实际耗时。

做精确分析时建议使用VSCode进行解析,直接用VSCode打开.cpuprofile文件即可。

图8 Chrome比重图(Heavy)示例

图9 VSCode比重图(Heavy)示例

树形图(Tree)

树形图列出了所有调用栈的栈底,可以理解为时序火焰图从上往下看,看到的首先是调用链的起始函数,以及各自的Total Time时间,将树形图的所有Total Time的比例相加结果为100%。

具体到某一个函数,箭头展开,可以看到该函数调用的完整调用链,可能包含多条调用链,指代这些调用链都是从该函数调用下去的。

该图表可按照Total Time的大小排序,排在最前面的代表对应函数的Total Time耗时最长,可以作为重点进行分析。

图10 树形图(Tree)示例

函数名标签(TAG)的相关说明

各类视图中函数名可能包含(TAG)格式标签,例如func1(AOT),或者函数名仅为(TAG)格式,例如(program)。

函数名包含(TAG)标签

当前支持8类函数名标签,分别是(NAPI)、(ARKUI_ENGINE)、(BUILTIN)、(GC)、(AINT)、(CINT)、(AOT)、(RUNTIME)。可为应用开发者及系统开发者对各部分进行性能分析提供参考。后四种标签通过非命令方式采集时默认不可见,可通过命令 hdc shell param set persist.ark.properties 0x505c; hdc shell reboot 打开。

  • (NAPI) :系统NativeAPI或者开发者在DevEco Studio上自定义的NativeAPI,例如模板Native C++应用中的 testNapi.add()

  • (ARKUI_ENGINE):Native实现的ArkUI组件,例如:onClick(),此类函数暂无法提供函数名。

  • (BUILTIN):由虚拟机提供的、Native实现的JS标准库接口,例如:JSON.stringify()

  • (GC):垃圾回收阶段。

  • (AINT):TS/JS方法,该方法通过虚拟机的汇编解释器解释执行。

  • (CINT):TS/JS方法,该方法通过虚拟机的C解释器解释执行。

  • (AOT):TS/JS方法,该方法通过虚拟机的AOT(Ahead Of Time)编译器提前编译成了机器码,在满足编程规范的前提下可以获得充分编译加速,执行时间比解释执行快。

  • (RUNTIME):Native接口(NAPI, ARKUI_ENGINE, BUILTIN)调用该方法时,表示该方法调用到了虚拟机内部运行时代码。

函数名仅为(TAG)标签

该类标签代表的是一类特殊节点,并非实际函数,包含三种,分别是(root)、(program)、(idle),具体含义如下。

  • (root):根节点,是program和idle以及所有栈底的父节点,可以理解为main函数的上一层。

  • (program):代表程序执行进入纯Native代码阶段,该阶段无JS代码执行,也无JS调用Native或者Native调用JS情况,可能处于系统框架层代码执行阶段。

  • (idle):被采集线程无任务执行或处于非running态,未占用CPU。

    说明:

    当前尚未统计(idle)阶段,该部分时间包含在(program)阶段中。

(TAG)标签时间占比统计

cpuprofile文件以json格式打开,json开头有各个TAG的总时间字段,单位为微秒(us),其中otherTime字段代表(idle)、(root)、(program)三种TAG的总时间。可以据此计算出每种TAG标签的耗时占比,为性能分析提供参考。

图11 时间占比统计示例

数据采集方法及适用场景

各采集工具适用场景及支持情况

采集方法DevEco Studio ProfilerJavaScript Profilerhdc shell应用代码插桩
debug应用支持支持支持支持
release应用暂不支持暂不支持支持支持
采集主线程支持支持支持支持
采集Worker线程暂不支持支持支持支持
采集启动后数据支持支持支持支持
采集冷启动数据暂不支持不支持支持支持

DevEco Studio Profiler工具采集

  1. 启动应用,打开DevEco Studio并确保连接到设备(右上角显示设备SN)。

  2. 按照下图所示①-⑤的步骤打开 Profiler > Time ,选择设备及应用,创建一个新的Time Session监视器。

    图12 DevEco Studio Profiler采集指引

  1. 点击开始录制按钮,箭头变成方块代表开始录制。

  2. 操作应用,复现待分析场景。

  3. 再次点击录制按钮,方框变成灰色,结束录制。

  4. 选择ArkTS Callstack泳道,框选时间范围或者直接选择函数进行分析,具体可见DevEco Studio Profiler视图。

Chrome浏览器JavaScript Profiler工具采集

  1. 启动应用,可通过如下命令查看应用线程号。如果要抓Worker线程,列表中会有长线程号(长度是短线程号的两倍),每个Worker线程对应一个长线程号。

    hdc shell "netstat -anp | grep PandaDebugger"
    
  2. 绑定线程号和端口。多个Worker线程同时采集需各自绑定不同的端口号,打开多个Chrome窗口采集。

    说明:

    • 建议选择较大端口号避免冲突,这里以9006为例。

    • 每次断开连接或退出进程后需重新绑定端口号。

    • 多个Worker线程同时采集需各自绑定不同的端口号,打开多个Chrome窗口采集。

    hdc fport tcp:9006 localabstract:2172PandaDebugger
    

    图13 端口映射

  1. 在Chrome浏览器输入网址: devtools://devtools/bundled/inspector.html?ws=//127.0.0.1:9006 ,端口号与上文一致,点击回车,进入JavaScript Profiler页面。

  2. 点击左上角录制按钮,按钮变为红色开始录制。

  3. 操作应用,复现待分析场景。

  4. 再次点击录制按钮,按钮变为灰色结束录制。

  5. 点击左上角性能分析报告,右侧显示性能分析图表,可以选择图表类型,显示数据表或者火焰图,具体可见 Chrome浏览器JavaScript Profiler工具视图。

    图14 JavaScript Profile视图布局

hdc shell命令采集

  1. 根据场景设置对应虚拟机参数。

    • 采集冷启动数据

      # 仅采集主线程冷启动
      hdc shell param set persist.ark.properties 0x705c
      # 仅采集Worker线程冷启动
      hdc shell param set persist.ark.properties 0x1505c
      # 同时采集主线程及Worker线程冷启动 
      hdc shell param set persist.ark.properties 0x1705c
      
    • 采集启动后任意阶段

      # 仅采集主线程任意阶段
      hdc shell param set persist.ark.properties 0x2505c 
      # 仅采集Worker线程任意阶段
      hdc shell param set persist.ark.properties 0x4505c
      # 同时采集主线程及Worker线程任意阶段 
      hdc shell param set persist.ark.properties 0x6505c
      
  2. 针对冷启动数据的采集,需设置待采集应用的包名。此处以 com.ohos.example 为例。

    hdc shell param set persist.ark.arkbundlename com.ohos.example
    
  3. 重启设备。

    hdc shell reboot
    
  4. 启动应用,会在拉起应用前自动开始采集数据。

  5. 操作应用,复现待分析场景。

  6. 针对启动后任意阶段数据的采集,需使用如下命令,开始采集,其中 pid 为应用进程号。

    hdc shell kill -39 pid
    
  7. 操作应用,复现待分析场景。

  8. 停止采集数据,其中 pid 为应用进程号。

    hdc shell kill -39 pid
    
  9. 拉取cpuprofile文件。此处以com.ohos.example为例,文件实际位置及文件名以实际应用为准。

    说明:

    步骤6~8可重复执行多次,会分别采集多个阶段,生成多个.cpuprofile文件。

    每次采集的次数后缀会加1,初始次数为1。冷启动数据无次数后缀。

    # 主线程:
    # 通常非系统应用抓取后cpuprofile通常存储在/data/app/el2/100/base/<bundle_name>/files/
    hdc file recv /data/app/el2/100/base/com.ohos.example/files/com.ohos.example_次数.cpuprofile ./
    # 系统应用存储在/data/app/el2/0/base/<bundle_name>/files/
    hdc file recv /data/app/el2/0/base/com.ohos.example/files/com.ohos.example_次数.cpuprofile ./
    
    # Worker线程:
    # 通常非系统应用cpuprofile通常存储在/data/app/el2/100/base/<bundle_name>/files/
    hdc file recv /data/app/el2/100/base/com.ohos.example/files/com.ohos.example_线程id_次数.cpuprofile ./
    # 系统应用存储在/data/app/el2/0/base/<bundle_name>/files/
    hdc file recv /data/app/el2/0/base/com.ohos.example/files/com.ohos.example_线程id_次数.cpuprofile ./
    
  10. com.ohos.example.cpuprofile 文件导入Chrome浏览器 > JavaScript Profiler进行分析,具体可见 Chrome浏览器JavaScript Profiler工具视图。

    图15 加载cpuprofile文件

应用代码插桩采集

  1. 在应用代码中按照如下方式插桩,并打包、安装应用。

    说明:

    插桩位置建议选择为不会重复执行的关键位置,例如onClick中的首行和末行;若重复执行start、stop,仅有第一次的start、stop会成功执行。

    import hidebug from '@ohos.hidebug';
    // 参数为输出文件的文件名,无需加后缀。该参数为必要参数。
    hidebug.startJsCpuProfiling("filename");
    // code block
    // ...
    // code block
    hidebug.stopJsCpuProfiling("filename");
    
  2. 启动并操作应用,复现待分析场景,确保插桩代码行能执行到。

  3. 拉取json文件并将后缀更改为cpuprofile。此处以com.ohos.example为例,文件实际位置及文件名以实际应用为准。

    # 通常非系统应用抓取后cpuprofile通常存储在/data/app/el2/100/base/<bundle_name>/files/
    hdc file recv /data/app/el2/100/base/com.ohos.example/files/filename.json ./filename.cpuprofile# 系统应用存储在/data/app/el2/0/base/<bundle_name>/files/
    hdc file recv /data/app/el2/0/base/com.ohos.example/files/filename.json ./filename.cpuprofile
    
  4. filename.cpuprofile 文件导入Chrome浏览器 > JavaScript Profiler进行分析,具体可见 Chrome浏览器javascript-profiler工具视图。

    图16 加载cpuprofile文件

为了能让大家更好的学习鸿蒙(HarmonyOS NEXT)开发技术,这边特意整理了《鸿蒙开发学习手册》(共计890页),希望对大家有所帮助:https://qr21.cn/FV7h05

《鸿蒙开发学习手册》:

如何快速入门:https://qr21.cn/FV7h05

  1. 基本概念
  2. 构建第一个ArkTS应用
  3. ……

开发基础知识:https://qr21.cn/FV7h05

  1. 应用基础知识
  2. 配置文件
  3. 应用数据管理
  4. 应用安全管理
  5. 应用隐私保护
  6. 三方应用调用管控机制
  7. 资源分类与访问
  8. 学习ArkTS语言
  9. ……

基于ArkTS 开发:https://qr21.cn/FV7h05

  1. Ability开发
  2. UI开发
  3. 公共事件与通知
  4. 窗口管理
  5. 媒体
  6. 安全
  7. 网络与链接
  8. 电话服务
  9. 数据管理
  10. 后台任务(Background Task)管理
  11. 设备管理
  12. 设备使用信息统计
  13. DFX
  14. 国际化开发
  15. 折叠屏系列
  16. ……

鸿蒙开发面试真题(含参考答案):https://qr18.cn/F781PH

鸿蒙开发面试大盘集篇(共计319页):https://qr18.cn/F781PH

1.项目开发必备面试题
2.性能优化方向
3.架构方向
4.鸿蒙开发系统底层方向
5.鸿蒙音视频开发方向
6.鸿蒙车载开发方向
7.鸿蒙南向开发方向

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/796417.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JDK安全剖析之安全处理入门

0.前言 Java 安全包括大量 API、工具以及常用安全算法、机制和协议的实现。Java 安全 API 涵盖了广泛的领域&#xff0c;包括加密、公钥基础设施、安全通信、身份验证和访问控制。Java 安全技术为开发人员提供了编写应用程序的全面安全框架&#xff0c;还为用户或管理员提供了…

以Kotti项目为例使用pytest测试项目

在维护和构建大型项目时&#xff0c;单独一个一个手工测试代码已经不适用了&#xff0c;这时候就要用专门的测试框架进行测试。让我们以Kotti项目为例&#xff0c;用pytest这个测试框架进行实践测试吧。 使用python3.10 Ubuntu 系统 准备工作 下载和安装kotti库 pip install…

Flutter 解决NestedScrollView与TabBar双列表滚动位置同步问题

文章目录 前言一、需要实现的效果如下二、flutter实现代码如下&#xff1a;总结 前言 最近写flutter项目&#xff0c;遇到NestedScrollView与TabBar双列表滚动位置同步问题&#xff0c;下面是解决方案&#xff0c;希望帮助到大家。 一、需要实现的效果如下 1、UI图&#xff1…

代码随想录算法训练营三刷day46 | 动态规划之139.单词拆分

三刷day46 139.单词拆分1.确定dp数组以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp[i] 139.单词拆分 题目链接 解题思路&#xff1a;单词就是物品&#xff0c;字符串s就是背包&#xff0c;单词能否组成字符串s&#xff0c;就是问物品能不能把背包…

蓝桥杯-DS18B20温度传感器

一.管脚&芯片&寄存器 1.芯片 2.了解封装以及引脚的用法 3.相关寄存器 报警功能 二&#xff0c;如何使能DS18B20芯片 1.初始化芯片&比赛提供的驱动代码 比赛提供的底层驱动代码 /* # 单总线代码片段说明1. 本文件夹中提供的驱动代码供参赛选手完成程序设计参考…

【前沿模型解析】潜在扩散模 1 | LDM第一阶段-感知图像压缩总览

文章目录 0 开始~1 感知压缩的目的2 自回归编码器-解码器生成模型一览2.1 AE 自编码器2.2 VAE 变分自编码器2.3 VQ-VAE2.4 VQ-GAN 3 代码部分讲解总览 0 开始~ 从今天起呢&#xff0c;我们会剖析LDM&#xff08;潜在扩散模型&#xff09; 从去年开始&#xff0c;大量的生成模…

【mac操作】brew指令集

brew指令集记录 1. brew search 【软件名称】2. rm -rf $(brew --cache)3. brew install 【软件名】4. brew uninstall 【软件名】5. 未完待续&#xff0c;&#xff0c;&#xff0c;&#xff0c; 官网路径&#xff1a; Homebrew官网 最上面就来一个homebrew安装指令吧&#xf…

三、Jenkins相关操作

Jenkins操作 一、插件管理1.修改公共插件源2.下载中文汉化插件2.1 安装插件2.2 重启2.3 设置为中文 3.远程部署插件 二、用户权限管理1.安装权限插件2.开启权限3.创建角色3.1 Global roles3.2 Item roles 4.创建用户5.给用户分配角色 三、凭证管理四、Git管理1.账号密码方式1.1…

深入浅出 -- 系统架构之Keepalived搭建双机热备

Keepalived重启脚本双机热备搭建 ①首先创建一个对应的目录并下载keepalived安装包&#xff08;提取码:s6aq&#xff09;到Linux中并解压&#xff1a; [rootlocalhost]# mkdir /soft/keepalived && cd /soft/keepalived [rootlocalhost]# wget https://www.keepalived.…

【Flutter】Getx设计模式及Provider、Repository、Controller、View等

本文基于Getx 4,x 本本 1、引入 再次接触到Flutter项目&#xff0c;社区俨然很完善和活跃。pubs.dev 寻找状态管理的时候看到很熟悉的Getx时间&#xff0c;俨然发现Getx的版本已到是4.x版本&#xff0c;看到Getx的功能已经非常强大了&#xff0c;庞大的API俨然成为一种开发框架…

c# wpf LiveCharts 简单试验

1.概要 1.1 说明 1.2 环境准备 NuGet 添加插件安装 2.代码 <Window x:Class"WpfApp3.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"…

基于单片机电子密码锁系统设计

**单片机设计介绍&#xff0c;基于单片机电子密码锁系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机电子密码锁系统设计概要主要包括以下几个方面&#xff1a; 一、系统概述 基于单片机电子密码锁系统是一个…

c++11的重要特性2

可变参数模板在3中。 目录 ​编辑 1、统一的列表初始化&#xff1a; std::initializer_list&#xff1a; std::initializer_list是什么类型&#xff1a; std::initializer_list使用场景&#xff1a; 让模拟实现的vector也支持{}初始化和赋值 2、声明 auto decltype nul…

深入浅出 -- 系统架构之分布式多形态的存储型集群

一、多形态的存储型集群 在上阶段&#xff0c;我们简单聊了下集群的基本知识&#xff0c;以及快速过了一下逻辑处理型集群的内容&#xff0c;下面重点来看看存储型集群&#xff0c;毕竟这块才是重头戏&#xff0c;集群的形态在其中有着多种多样的变化。 逻辑处理型的应用&…

SQL注入---POST注入

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一. POST提交概述 在Webshell文章中介绍过post提交和get提交的区别&#xff0c;这里不再赘述 post提交和get提交的区别&#xff1a; get方式提交URL中的参数信息&#xff0c;post方式则是将信…

post请求爬虫入门程序

<!--爬虫仅支持1.8版本的jdk--> <!-- 爬虫需要的依赖--> <dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.2</version> </dependency><!-- 爬虫需…

知识融合与消歧:完善知识图谱的关键步骤

知识融合与消歧&#xff1a;完善知识图谱的关键步骤 一、引言&#xff1a;知识融合与消歧的重要性 在今天的数据驱动时代&#xff0c;知识图谱已成为组织和理解海量信息的关键技术。它们使得复杂的数据关系可视化&#xff0c;为人工智能提供了丰富的知识基础。然而&#xff0c…

静态路由协议实验综合实验

需求&#xff1a; 1、除R5的换回地址已固定外&#xff0c;整个其他所有的网段基于192.168.1.0/24进行合理的IP地址划分。 2、R1-R4每台路由器存在两个环回接口&#xff0c;用于模拟连接PC的网段&#xff1b;地址也在192.168.1.0/24这个网络范围内。 3、R1-R4上不能直接编写到…

打造你的专属云开发环境:支持任意 IDE,任意云服务 | 开源日报 No.215

loft-sh/devpod Stars: 6.9k License: MPL-2.0 devpod 是一个开源的、仅限客户端的、不受限制的工具&#xff0c;可以与任何集成开发环境&#xff08;IDE&#xff09;一起使用&#xff0c;并允许您在任何云端、Kubernetes 或本地 Docker 上进行开发。 使用 devcontainer.json…

python文件打包找不到文件路径

引用&#xff1a;【将Python代码打包成exe可执行文件】 https://www.bilibili.com/video/BV1P24y1o7FY/?p4&share_sourcecopy_web&vd_sourced5811f31a0635dfc69a182c7bf1adb8b 在代码中&#xff0c;我们想读取文件a&#xff0c;一般使用如下方法。 import osdir os…