竞赛 Yolov安全帽佩戴检测 危险区域进入检测 - 深度学习 opencv

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 Yolov安全帽佩戴检测 危险区域进入检测

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

建筑工人头部伤害是造成建筑伤亡事故的重要原因。佩戴安全帽是防止建筑工人发生脑部外伤事故的有效措施,而在实际工作中工人未佩戴安全帽的不安全行为时有发生。因此,对施工现场建筑工人佩戴安全帽自动实时检测进行探究,将为深入认知和主动预防安全事故提供新的视角。然而,传统的施工现场具有安全管理水平低下、管理范围小、主要依靠安全管理人员的主观监测并且时效性差、不能全程监控等一系列问题。
本项目基于yolov5实现了安全帽和危险区域检测。

2 效果演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Yolov5框架

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

  ①==>40×40×255②==>20×20×255③==>10×10×255​    

在这里插入图片描述

  • 相关代码

      class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

4 数据处理和训练

4.1 安全帽检测

这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml 文件,创建自己的数据集配置文件
custom_data.yaml。
创建自己的数据集配置文件

    # 训练集和验证集的 labels 和 image 文件的位置
​    train: ./score/images/train
​    val: ./score/images/val
​    # number of classesnc: 3# class namesnames: ['person', 'head', 'helmet']

创建每个图片对应的标签文件
使用 data/gen_data/gen_head_helmet.py 来将 VOC 的数据集转换成 YOLOv5 训练需要用到的格式。
使用标注工具类似于 Labelbox 、CVAT 、精灵标注助手 标注之后,需要生成每个图片对应的 .txt 文件,其规范如下:

  • 每一行都是一个目标
  • 类别序号是零索引开始的(从0开始)
  • 每一行的坐标 class x_center y_center width height 格式
  • 框坐标必须采用归一化的 xywh格式(从0到1)。如果您的框以像素为单位,则将x_center和width除以图像宽度,将y_center和height除以图像高度。

代码如下:

import numpy as np
​    def convert(size, box):"""
​        将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
​        :param size: 图片的尺寸: [w,h]
​        :param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
​        :return: 转换后的 [x,y,w,h]
​        """
​    x1 = int(box[0])y1 = int(box[1])x2 = int(box[2])y2 = int(box[3])dw = np.float32(1. / int(size[0]))dh = np.float32(1. / int(size[1]))w = x2 - x1h = y2 - y1x = x1 + (w / 2)y = y1 + (h / 2)x = x * dww = w * dwy = y * dhh = h * dhreturn [x, y, w, h]

生成的 .txt 例子:


​ 1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
​ 1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
​ 1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
​ 1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
​ 0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
​ 0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
​ 0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374

选择模型
在文件夹 ./models 下选择一个你需要的模型然后复制一份出来,将文件开头的 nc = 修改为数据集的分类数,下面是借鉴
./models/yolov5s.yaml来修改的

# parameters
​    nc: 3  # number of classes     <============ 修改这里为数据集的分类数
​    depth_multiple: 0.33  # model depth multiple
​    width_multiple: 0.50  # layer channel multiple# anchorsanchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 backbonebackbone:# [from, number, module, args][[-1, 1, Focus, [64, 3]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, BottleneckCSP, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 9, BottleneckCSP, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, BottleneckCSP, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 1, SPP, [1024, [5, 9, 13]]],[-1, 3, BottleneckCSP, [1024, False]],  # 9]# YOLOv5 headhead:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, BottleneckCSP, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, BottleneckCSP, [256, False]],  # 17[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, BottleneckCSP, [512, False]],  # 20[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, BottleneckCSP, [1024, False]],  # 23[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

开始训练
这里选择了 yolov5s 模型进行训练,权重也是基于 yolov5s.pt 来训练

    python train.py --img 640 \--batch 16 --epochs 10 --data ./data/custom_data.yaml \--cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt

4.2 检测危险区域内是否有人

危险区域标注方式

使用的是 精灵标注助手 标注,生成了对应图片的 json 文件

执行侦测

    python area_detect.py --source ./area_dangerous --weights ./weights/helmet_head_person_s.pt

效果
危险区域会使用 红色框 标出来,同时,危险区域里面的人体也会被框出来,危险区域外的人体不会被框选出来。
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/792861.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flutter仿Boss-4.短信验证码界面

效果 简述 在移动应用开发中&#xff0c;处理短信验证码是确保用户身份验证和安全性的重要步骤。本文将介绍如何使用Flutter构建一个短信验证码界面&#xff0c;让用户输入通过短信发送到他们手机的四位验证码。 依赖项 在这个项目中&#xff0c;我们将使用以下依赖项&#…

vue快速入门(六)v-else和v-else-if

注释很详细&#xff0c;直接上代码 上一篇 新增内容 v-else-if用法v-else用法 源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-s…

Excel、PowerQuery 和 ChatGPT 终极手册(上)

原文&#xff1a;Ultimate ChatGPT Handbook for Enterprises 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 序言 在不断发展的数据管理和分析领域中&#xff0c;掌握 Excel 的查找功能不仅是一种技能&#xff0c;更是高效数据处理的基石。《使用 Power Query 和 Ch…

论文阅读:Walk These Ways: 通过行为多样性调整机器人控制以实现泛化

Walk These Ways: 通过行为多样性调整机器人控制以实现泛化 摘要&#xff1a; 通过学习得到的运动策略可以迅速适应与训练期间经历的类似环境&#xff0c;但在面对分布外测试环境失败时缺乏快速调整的机制。这就需要一个缓慢且迭代的奖励和环境重新设计周期来在新任务上达成良…

Django模板层——三种自定义模板simple_tag、inclusion_tag、filter的用法

目录 1. 前言 2. 前置操作 3. simple_tag 3.1 注意点 4. inclusion_tag 5. filter 6. 结尾 1. 前言 在前后端不分离的模式中&#xff0c;Django的模板语法尤为重要&#xff0c;我们可以动态传入变量&#xff0c;并在前端HTML中进行展示。在变量展示时&#xff0c;会有一…

JavaWeb中的Servlet是什么?怎么使用?

文章目录 一、什么是Servlet二、Servlet的基本内容1、Servlet的作用2、Servlet接口3、Servlet接口实现类4、Servlet接口实现类开发步骤5、Servlet对象生命周期6、HttpServletResquest接口7、HttpServletResponse接口8、请求对象和响应对象流程图9、请求对象和响应对象生命周期1…

vulhub中Apache Solr 远程命令执行漏洞复现(CVE-2019-0193)

Apache Solr 是一个开源的搜索服务器。Solr 使用 Java 语言开发&#xff0c;主要基于 HTTP 和 Apache Lucene 实现。此次漏洞出现在Apache Solr的DataImportHandler&#xff0c;该模块是一个可选但常用的模块&#xff0c;用于从数据库和其他源中提取数据。它具有一个功能&#…

vue给input密码框设置眼睛睁开闭合对于密码显示与隐藏

<template><div class"login-container"><el-inputv-model"pwd":type"type"class"pwd-input"placeholder"请输入密码"><islot"suffix"class"icon-style":class"elIcon"…

三子棋(C游戏)

文章目录 三子棋的描述思路关键代码运行代码 三子棋的描述 三子棋是一种民间传统游戏&#xff0c;又叫九宫棋、圈圈叉叉棋、一条龙、井字棋等。游戏分为双方对战&#xff0c;双方依次在9宫格棋盘上摆放棋子&#xff0c;率先将自己的三个棋子走成一条线就视为胜利&#xff0c;…

实现 select 中嵌套 tree 外加搜索

实现 select 中嵌套 tree 外加搜索 参考地址实现地址 代码 <el-form-item label"考核人员" prop"userIdArr" v-if"title 发起考核"><el-popover v-model"popoverVisible" placement"bottom" trigger"cli…

论文笔记:Teaching Large Language Models to Self-Debug

ICLR 2024 REVIEWER打分 6666 1 论文介绍 论文提出了一种名为 Self-Debugging 的方法&#xff0c;通过执行生成的代码并基于代码和执行结果生成反馈信息&#xff0c;来引导模型进行调试不同于需要额外训练/微调模型的方法&#xff0c;Self-Debugging 通过代码解释来指导模型识…

Windows Server 2008 (限制用户登录时间、为客户机设置统一的桌面背景、管理用户统一安装软件、隐藏用户C盘)

一、限制用户登陆时间 Server&#xff1a; Client&#xff1a; Server&#xff1a; 将新建的用户移动到group1下 限制用户登陆时间 二、为客户机设置统一的桌面背景 Server&#xff1a; 将jpg图片放到abc文件夹中&#xff0c;并且设置文件夹共享模式 三、管理用户统一安装软件…

DFS:深搜+回溯+剪枝解决矩阵搜索问题

创作不易&#xff0c;感谢三连&#xff01;&#xff01; 一、N皇后 . - 力扣&#xff08;LeetCode&#xff09; class Solution { public:vector<vector<string>> ret;vector<string> path;bool checkcol[9];bool checkdig1[18];bool checkdig2[18];int n…

WordPress主题–Applay v3.7.1 开心版下载

Applay是一款功能强大的多用途WordPress主题&#xff0c;专为应用展示、应用商店、商业和购物等Woocommerce网站而设计。它配备了拖曳式页面编辑功能&#xff0c;类似于Elementor&#xff0c;让您能够轻松构建和定制您的网站。无论您有什么需求&#xff0c;都可以尝试下这个主题…

Flutter 画笔(Paint)、绘制直线(drawLine)

override bool shouldRepaint(CustomPainter oldDelegate) > true; } class MyPainter extends CustomPainter { override void paint(Canvas canvas, Size size) { //画背景 var paint Paint() …isAntiAlias false …strokeWidth30.0 …color Colors.red; c…

金融贷款批准预测项目

注意&#xff1a;本文引用自专业人工智能社区Venus AI 更多AI知识请参考原站 &#xff08;[www.aideeplearning.cn]&#xff09; 在金融服务行业&#xff0c;贷款审批是一项关键任务&#xff0c;它不仅关系到资金的安全&#xff0c;还直接影响到金融机构的运营效率和风险管理…

8000预算可以购买阿里云服务器配置整理

一个月8000元预算如何选择阿里云服务器配置&#xff1f;八千预算可选的阿里云服务器配置相当高了&#xff0c;这个预算可以购买阿里云企业级独享型云服务器&#xff0c;至少8核以上的配置&#xff0c;这个预算可以支持复杂、高负载或大规模的业务需求。阿里云服务器网整理8000元…

微信小程序python+uniapp高校图书馆图书借阅管理系统ljr9i

根据日常实际需要&#xff0c;一方面需要在系统中实现基础信息的管理&#xff0c;同时还需要结合实际情况的需要&#xff0c;提供图书信息管理功能&#xff0c;方便图书管理工作的展开&#xff0c;综合考虑&#xff0c;本套系统应该满足如下要求&#xff1a; 首先&#xff0c;在…

C之结构体初始化10种写法总结(九十)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

基于Java微信小程序的医院挂号小程序,附源码

博主介绍&#xff1a;✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3…