十大经典算法【C实现】

此篇文章纯属做笔记记录,关于这些经典算法实际上已经算是很经典了。
  • 冒泡排序

算法实现:
比较相邻的元素。如果第一个比第二个大,就交换他们两个。
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

#define SWITCH    0  //switch 1:递增排序 0:递减排序
void bubble_sort(int arr[], int len) {int i, j, temp;for (i = 0; i < len - 1; i++)for (j = 0; j < len - 1 - i; j++){#if SWITCHif (arr[j] > arr[j + 1]) { //算法实现为递增排序#elseif (arr[j] < arr[j + 1]) { //算法实现为递减排序#endiftemp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}
}
  • 选择排序

算法实现:
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
重复第二步,直到所有元素均排序完毕。

#define SWITCH    0  //switch 1:递增排序 0:递减排序
//交换两个变量位置 二选一【个人比较喜欢2】
static void swap(int *a,int *b) 
{int temp = *a;*a = *b;*b = temp;
}
#define swap(a,b)  {int t=a;a=b;b=t;}void selection_sort(int arr[], int len)  
{int i,j;for (i = 0 ; i < len - 1 ; i++) {int min = i;for (j = i + 1; j < len; j++)     //继续未排序元素{#if SWITCHif (arr[j] < arr[min])    //找到目前最小值 //递增排序#elseif (arr[j] > arr[min])    //找到目前最小值 //递减排序#endif{min = j;             //记录最小值位置}}swap(&arr[min], &arr[i]);      //交换值}
}
  • 插入排序

算法实现:将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

#define SWITCH    0  //switch 1:递增排序 0:递减排序
void insertion_sort(int arr[], int len){int i,j,key;for (i=1;i<len;i++){key = arr[i];j=i-1;#if SWITCHwhile((j>=0) && (arr[j]>key)) {#elsewhile((j>=0) && (arr[j]<key)) {#endifarr[j+1] = arr[j];j--;}arr[j+1] = key;}
}
  • 希尔排序

算法实现
选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;按增量序列个数 k,对序列进行 k 趟排序;每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度

void shell_sort(int arr[], int len) {int gap, i, j;int temp;for (gap = len >> 1; gap > 0; gap >>= 1)for (i = gap; i < len; i++) {temp = arr[i];for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)arr[j + gap] = arr[j];arr[j + gap] = temp;}
}
  • 归并排序

算法实现:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;设定两个指针,最初位置分别为两个已经排序序列的起始位置;比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;重复步骤 3 直到某一指针达到序列尾;将另一序列剩下的所有元素直接复制到合并序列尾

#define min(x,y) {x < y ? x : y}
void merge_sort(int arr[], int len) {int *a = arr;int *b = (int *) malloc(len * sizeof(int));int seg, start;for (seg = 1; seg < len; seg += seg) {for (start = 0; start < len; start += seg * 2) {int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);int k = low;int start1 = low, end1 = mid;int start2 = mid, end2 = high;while (start1 < end1 && start2 < end2)b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];while (start1 < end1)b[k++] = a[start1++];while (start2 < end2)b[k++] = a[start2++];}int *temp = a;a = b;b = temp;}if (a != arr) {int i;for (i = 0; i < len; i++)b[i] = a[i];b = a;}free(b);
}
  • 快速排序

算法实现:
从数列中挑出一个元素,称为 “基准”(pivot);重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

typedef struct _Range {int start, end;
} Range;Range new_Range(int s, int e) {Range r;r.start = s;r.end = e;return r;
}void swap(int *x, int *y) {int t = *x;*x = *y;*y = t;
}void quick_sort(int arr[], const int len) {if (len <= 0)return; // 避免len等於負值時引發段錯誤(Segment Fault)// r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素Range r[len];int p = 0;r[p++] = new_Range(0, len - 1);while (p) {Range range = r[--p];if (range.start >= range.end)continue;int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點int left = range.start, right = range.end;do {while (arr[left] < mid) ++left;   // 檢測基準點左側是否符合要求while (arr[right] > mid) --right; //檢測基準點右側是否符合要求if (left <= right) {swap(&arr[left], &arr[right]);left++;right--;               // 移動指針以繼續}} while (left <= right);if (range.start < right) r[p++] = new_Range(range.start, right);if (range.end > left) r[p++] = new_Range(left, range.end);}
}
  • 堆排序

算法实现:创建一个堆 H[0……n-1];把堆首(最大值)和堆尾互换;把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;重复步骤 2,直到堆的尺寸为 1。

#include <stdio.h>
#include <stdlib.h>void swap(int *a, int *b) {int temp = *b;*b = *a;*a = temp;
}void max_heapify(int arr[], int start, int end) {// 建立父節點指標和子節點指標int dad = start;int son = dad * 2 + 1;while (son <= end) { // 若子節點指標在範圍內才做比較if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的son++;if (arr[dad] > arr[son]) //如果父節點大於子節點代表調整完畢,直接跳出函數return;else { // 否則交換父子內容再繼續子節點和孫節點比較swap(&arr[dad], &arr[son]);dad = son;son = dad * 2 + 1;}}
}void heap_sort(int arr[], int len) {int i;// 初始化,i從最後一個父節點開始調整for (i = len / 2 - 1; i >= 0; i--)max_heapify(arr, i, len - 1);// 先將第一個元素和已排好元素前一位做交換,再重新調整,直到排序完畢for (i = len - 1; i > 0; i--) {swap(&arr[0], &arr[i]);max_heapify(arr, 0, i - 1);}
}int main() {int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };int len = (int) sizeof(arr) / sizeof(*arr);heap_sort(arr, len);int i;for (i = 0; i < len; i++)printf("%d ", arr[i]);printf("\n");return 0;
}
  • 计数排序

算法实现:找出待排序的数组中最大和最小的元素;统计数组中每个值为i的元素出现的次数,存入数组C的第i项;对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

#include <stdio.h>
#include <stdlib.h>
#include <time.h>void print_arr(int *arr, int n) {int i;printf("%d", arr[0]);for (i = 1; i < n; i++)printf(" %d", arr[i]);printf("\n");
}void counting_sort(int *ini_arr, int *sorted_arr, int n) {int *count_arr = (int *) malloc(sizeof(int) * 100);int i, j, k;for (k = 0; k < 100; k++)count_arr[k] = 0;for (i = 0; i < n; i++)count_arr[ini_arr[i]]++;for (k = 1; k < 100; k++)count_arr[k] += count_arr[k - 1];for (j = n; j > 0; j--)sorted_arr[--count_arr[ini_arr[j - 1]]] = ini_arr[j - 1];free(count_arr);
}int main(int argc, char **argv) {int n = 10;int i;int *arr = (int *) malloc(sizeof(int) * n);int *sorted_arr = (int *) malloc(sizeof(int) * n);srand(time(0));for (i = 0; i < n; i++)arr[i] = rand() % 100;printf("ini_array: ");print_arr(arr, n);counting_sort(arr, sorted_arr, n);printf("sorted_array: ");print_arr(sorted_arr, n);free(arr);free(sorted_arr);return 0;
}
  • 桶排序

算法实现:桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:在额外空间充足的情况下,尽量增大桶的数量,使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

#include<stdio.h>#define Max_len 10      //数组元素个数// 打印结果
void Show(int  arr[], int n)
{int i;for ( i=0; i<n; i++ )printf("%d  ", arr[i]);printf("\n");
}//获得未排序数组中最大的一个元素值
int GetMaxVal(int* arr, int len)
{int maxVal = arr[0]; //假设最大为arr[0]for(int i = 1; i < len; i++)  //遍历比较,找到大的就赋值给maxVal{if(arr[i] > maxVal)maxVal = arr[i];}return maxVal;  //返回最大值
}//桶排序   参数:数组及其长度
void BucketSort(int* arr , int len)
{int tmpArrLen = GetMaxVal(arr , len) + 1;int tmpArr[tmpArrLen];  //获得空桶大小int i, j;for( i = 0; i < tmpArrLen; i++)  //空桶初始化tmpArr[i] = 0;for(i = 0; i < len; i++)   //寻访序列,并且把项目一个一个放到对应的桶子去。tmpArr[ arr[i] ]++;for(i = 0, j = 0; i < tmpArrLen; i ++){while( tmpArr[ i ] != 0) //对每个不是空的桶子进行排序。{arr[j ] = i;  //从不是空的桶子里把项目再放回原来的序列中。j++;tmpArr[i]--;}}
}int main()
{   //测试数据int arr_test[Max_len] = { 8, 4, 2, 3, 5, 1, 6, 9, 0, 7 };//排序前数组序列Show( arr_test, Max_len );//排序BucketSort( arr_test,  Max_len);//排序后数组序列Show( arr_test, Max_len );return 0;
}
  • 基数排序

算法实现:基数排序有两种方法:
这两种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:基数排序:根据键值的每位数字来分配桶;计数排序:每个桶只存储单一键值;桶排序:每个桶存储一定范围的数值;

#include<stdio.h>
#define MAX 20
//#define SHOWPASS
#define BASE 10void print(int *a, int n) {int i;for (i = 0; i < n; i++) {printf("%d\t", a[i]);}
}void radixsort(int *a, int n) {int i, b[MAX], m = a[0], exp = 1;for (i = 1; i < n; i++) {if (a[i] > m) {m = a[i];}}while (m / exp > 0) {int bucket[BASE] = { 0 };for (i = 0; i < n; i++) {bucket[(a[i] / exp) % BASE]++;}for (i = 1; i < BASE; i++) {bucket[i] += bucket[i - 1];}for (i = n - 1; i >= 0; i--) {b[--bucket[(a[i] / exp) % BASE]] = a[i];}for (i = 0; i < n; i++) {a[i] = b[i];}exp *= BASE;#ifdef SHOWPASSprintf("\nPASS   : ");print(a, n);
#endif}
}int main() {int arr[MAX];int i, n;printf("Enter total elements (n <= %d) : ", MAX);scanf("%d", &n);n = n < MAX ? n : MAX;printf("Enter %d Elements : ", n);for (i = 0; i < n; i++) {scanf("%d", &arr[i]);}printf("\nARRAY  : ");print(&arr[0], n);radixsort(&arr[0], n);printf("\nSORTED : ");print(&arr[0], n);printf("\n");return 0;
}

资源参考:
还需要完善,写到后面没心情写了,哈哈哈。等有心情就继续

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/791994.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

paddlepaddle模型转换onnx指导文档

一、检查本机cuda版本 1、右键找到invdia控制面板 2、找到系统信息 3、点开“组件”选项卡&#xff0c; 可以看到cuda版本&#xff0c;我们这里是cuda11.7 cuda驱动版本为516.94 二、安装paddlepaddle环境 1、获取pip安装命令 &#xff0c;我们到paddlepaddle官网&#xff…

医院云HIS系统源码,二级医院、专科医院his系统源码,经扩展后能够应用于医联体/医共体

基于云计算技术的B/S架构的HIS系统&#xff0c;为医疗机构提供标准化的、信息化的、可共享的医疗信息管理系统&#xff0c;实现医患事务管理和临床诊疗管理等标准医疗管理信息系统的功能。 系统利用云计算平台的技术优势&#xff0c;建立统一的云HIS、云病历、云LIS&#xff0…

【OSTEP】并发:线程与多线程

" A flow of control within a process that consists of a PC, a register set and a stack space" 本章将介绍为单个运行进程提供的新抽象 —— 线程 (thread) 线程是 调度的一个基本单位&#xff08;basic unit of CPU scheduling&#xff09;一个单独的线程至…

MySQL 索引底层探索:为什么是B+树?

MySQL 索引底层探索&#xff1a;为什么是B树&#xff1f; 1. 由一个例子总结索引的特点2. 基于哈希表实现的哈希索引3. 高效的查找方式&#xff1a;二分查找4. 基于二分查找思想的二叉查找树5. 升级版的BST树&#xff1a;AVL 树6. 更加符合磁盘特征的B树7. 不断优化的B树&#…

企业信息化选型之辨

一般说大公司的报价比较高&#xff0c;其市场人员也宣传东西好所以卖的贵。这个说法占不住脚。大公司东西贵的核心原因是成本高。应用软件开发领域&#xff0c;大公司小公司技术差不多&#xff0c;功能也很容易模仿&#xff0c;细节有差异不假&#xff0c;但是数量级还是在一个…

2024年华为OD机试真题-求满足条件的最长子串的长度-Java-OD统一考试(C卷)

题目描述: 给定一个字符串,只包含字母和数字,按要求找出字符串中的最长(连续)子串的长度,字符串本身是其最长的子串,子串要求: 1、 只包含1个字母(a~z, A~Z),其余必须是数字; 2、 字母可以在子串中的任意位置; 如果找不到满足要求的子串,如全是字母或全是数字,则…

ffmpeg Android 笔记

目录 没有示例项目 编译好的.a文件 ffmpegandroid 延时有220ms rk官方有例子 ffmpeg Android 笔记 没有示例项目 编译好的.a文件 FFmpeg-Android/ffmpeg-android-aarch64-34/lib at main yhbsh/FFmpeg-Android GitHub ffmpegandroid 看到了音频解码器 FFmpegAndroid/a…

rabbitMQ版本问题与下载

都到现在了&#xff0c;大家不会安装东西还是不看版本吧 云服务器买的是centos7&#xff0c;而erlang在24版本后不支持centos7了 所以需要找24版本以下的erlang&#xff0c;而不同erlang对应不同rabbitmq所以需要对应 下载erlang 说实话&#xff0c;自己安装&#xff0c;还是…

【CSS】高级元素:列表、表格、表单

列表 列表的元素 有序列表&#xff1a;ol、li无序列表&#xff1a;ul、li自定义列表&#xff1a;dl dt dd 自定义列表 dl 定义列表&#xff0c;直接元素只能是dt、dd dt 列表中每一项的项目名 dd 列表的每一项的具体描述 表格 table 表格border-collapse:collapse; (塌陷的…

react diffing算法及函数柯里化

一.deffing 算法 &#xff08;1&#xff09;虚拟DOM中Key的作用&#xff1a; 当状态中的书韩剧发生变化时&#xff0c;react会根据【新数据】生成【新的虚拟DOM】&#xff0c;随后React进行【新虚拟 DOM】与【旧虚拟DOM】的diff比较&#xff0c;比较规则如下 &#xff1a; a.旧…

RIP协议(路由信息协议)

一、RIP协议概述 RIP协议&#xff08;Routing Information Protocol&#xff0c;路由信息协议&#xff09;是一种基于距离矢量的内部网关协议&#xff0c;即根据跳数来度量路由开销&#xff0c;进行路由选择。 相比于其它路由协议&#xff08;如OSPF、ISIS等&#xff09;&#…

C++ | string类学习 | string的常见接口使用方式

目录 为什么要学习string类&#xff1f; C语言中的字符串 OOP面向对象编程 两个面试题 标准库中的string类 string类了解 string类的文档介绍 总结 string类的常用接口说明 string类对象的常见构造 string类对象的容量操作 size()和length() clear() resize(size…

【JVM】关于JVM垃圾回收

文章目录 &#x1f334;死亡对象的判断算法&#x1f338;引用计数算法&#x1f338;可达性分析算法 &#x1f333;垃圾回收算法&#x1f338;标记-清除算法&#x1f338;复制算法&#x1f338;标记-整理算法&#x1f338;分代算法&#x1f338;哪些对象会进入新生代&#xff1f…

idea2023.2.1 java项目-web项目创建-servlet类得创建

如何创建Java项目 1.1 方式1&#xff1a; 1.2 方式&#xff1a; 1.3 方式 如何创建web项目 方式 ----- 推荐 如何创建servlet类 复制6 中得代码 给servlet 配置一个路径 启动tomcat 成功了

Netty进阶

三. Netty 进阶 1. 粘包与半包 1.1 粘包现象 服务端代码 public class HelloWorldServer {static final Logger log LoggerFactory.getLogger(HelloWorldServer.class);void start() {NioEventLoopGroup boss new NioEventLoopGroup(1);NioEventLoopGroup worker new Ni…

时序预测 | Python实现VMD-CNN-LSTM时间序列预测

时序预测 | Python实现VMD-CNN-LSTM时间序列预测 目录 时序预测 | Python实现VMD-CNN-LSTM时间序列预测预测效果基本介绍模型描述代码设计预测效果 基本介绍 VMD-CNN-LSTM 是一种混合深度学习模型,结合了变分模态分解(VMD)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的…

C#,简单,精巧,实用的按类型删除指定文件的工具软件

点击下载本文软件&#xff08;积分&#xff09;&#xff1a; https://download.csdn.net/download/beijinghorn/89059141https://download.csdn.net/download/beijinghorn/89059141 下载审核通过之前&#xff0c;请从百度网盘下载&#xff08;无积分&#xff09;&#xff1a;…

7 X 24h智能安全运维再升级!Fortinet 全面集成全新 FortiGuard SOCaaS

数字化时代网络安全威胁层出不穷&#xff0c;网络犯罪分子的狡诈攻击手段不断翻新&#xff0c;传统安全防御手段亟需进化。更为棘手的是&#xff0c;网络安全专业人才的匮乏&#xff0c;让众多企业陷入安全运营的困境。为了有效应对这一挑战&#xff0c;Fortinet全新推出FortiG…

i++的理解

package com.example.elasticsearch;public class Test1 {public static void main(String[] args) {int i 10;i i;System.out.println(i);} }以上代码输出为10&#xff0c;为何&#xff1f; 这个问题涉及到Java中的后缀递增运算符&#xff08;i&#xff09;的工作原理。当你…

【Python如何使用requests+re库进行简单爬虫实例应用】

1、安装requests库 (1)直接winR输入cmd进入命令行界面&#xff0c;执行命令&#xff1a;pip install requests (2)再Pycharm中&#xff0c;’File’-’Settings’-’Python interpreter’-’’-搜索’requests’-’install package’下载&#xff0c;如下图所示 2、实例&…